
Swift Playgrounds Curriculum Guide
October 2017

Swift Playgrounds Preview Guide | June 2016 2

Everyone Can Code
Technology has a language. It’s called code. And we

believe coding is an essential skill. Learning to code

teaches you how to solve problems and work together  
in creative ways. And it helps you build apps that bring

your ideas to life. We think everyone should have the

opportunity to create something that can change the

world. So we’ve designed a new program with the tools

and resources that let anyone learn, write and teach it.

Swift Playgrounds Curriculum Guide | October 2017 3

Everyone Can Code Curriculum

Everyone Can Code Curriculum | Overview | Key Features | Support Resources | Course Outlines | Additional Information | Curriculum Correlations

The Everyone Can Code program includes a range of resources that take students all the way from no coding experience to building their first apps.  
The table below provides an overview of all the free teaching and learning resources available.

Curriculum Device Audience App Prerequisites Overview Learning materials Support resources
Number of lesson  
hours included

Years K through 2 None Begin to think like coders with  
hands-on explorations of coding
concepts using visual-based apps.

• codeSpark Academy app
lessons

• Tynker Space Cadet course

• Get Started with Code 1
Teacher Guide

30 hours, including
Teacher Guide and  
app lessons

Years 3 through 5   None Explore fundamental coding
concepts, and practise thinking like
coders using visual-based apps.

• Tynker Dragon Spells course • Get Started with Code 2
Teacher Guide

36 hours, including
Teacher Guide and  
app lessons

Years 6  
through 10

None Learn fundamental coding concepts
using real Swift code.

• Swift Playgrounds app
• Learn to Code 1 & 2 lessons
• iTunes U course

• Learn to Code 1 & 2  
Teacher Guide

• Apple Teacher Learning Center
Swift Playgrounds badges

Up to 85 hours, including
Teacher Guide and Learn
to Code 1 & 2 lessons

Years 6  
through 10

Learn to Code  
1 & 2

Expand coding skills and start
thinking more like an app developer.

• Swift Playgrounds app
• Learn to Code 3 lessons

• Learn to Code 3  
Teacher Guide

Up to 45 hours, including
Teacher Guide and Learn
to Code 3 lessons

Senior high
school and
university

None Get practical experience with the
tools, techniques and concepts
needed to build a basic iOS app  
from scratch.

Intro to App Development with
Swift book and project files

• Intro to App Development  
with Swift Teacher Guide

90 hours

Senior high
school and
university

None Build a foundation in Swift, UIKit and
networking through hands-on labs
and guided projects. Students can
build an app of their own design by
the end of the course.

App Development with Swift
book and project files

• App Development with  
Swift Teacher Guide

180 hours

Swift Playgrounds Curriculum Guide | October 2017 4

Overview

Swift Playgrounds is a free iPad app from Apple that makes learning and
experimenting with code interactive and fun. Students can solve puzzles to
master the basics using Swift — a powerful programming language created  
by Apple and used by the pros to build many of today’s most popular apps.

The app comes with a complete set of Apple-designed lessons called  
Learn to Code. Using real Swift code, students solve puzzles and meet
characters they can control with just a tap. By exploring and solving rich  
puzzle worlds, students develop coding skills that become the foundation  
of their programming knowledge. Additional challenges and connected device
playgrounds are also included to let students apply what they’ve learned to
new contexts.

In Learn to Code 1 & 2, students learn concepts such as commands,
debugging, functions, loops, algorithms and more. The lessons require no
previous experience, so they’re perfect for first-time coders. Learn to Code 3
helps students expand their coding skills to start thinking more like an app
developer. An optional app design section in the Teacher Guide helps teachers
lead students through an app design process.

In the classroom
Learn to Code 1, 2 & 3, along with the lessons in the Teacher Guides, are  
for use with older primary school and junior high school students. The
materials are flexible and usable in any learning environment, and can be used
in a stand-alone coding class or as part of an intro to coding program. Lessons
are designed for 45- to 60-minute classes, and some span multiple periods.
The suggested amount of time needed to complete each section in a lesson is
included, so if you teach a less-structured class, like an after-school program,
you can divide up the lesson.

The Teacher Guides provide support that allows teachers with or without
coding experience to teach with them. It’s recommended that students and
teachers have fundamental knowledge of the coding concepts taught in  
Learn to Code 1 & 2 before moving on to Learn to Code 3.

Swift Playgrounds includes built-in coding lessons and stand-alone challenges.

Everyone Can Code Curriculum | Overview | Key Features | Support Resources | Course Outlines | Additional Information | Curriculum Correlations

Swift Playgrounds Curriculum Guide | October 2017 5

Real Swift, real iOS code. At the heart of Swift
Playgrounds is the same Swift programming
language that’s used to build many of the
leading apps in the App Store today. The skills
students learn in Swift Playgrounds don’t just
translate into useful skills elsewhere, they’re  
the exact skills they need to build apps.

Interactive environment. Create code on the
left side of the screen and instantly see the
results on the right, with just a tap.

Accessibility. Swift Playgrounds was designed
with accessibility in mind from day one. It takes
advantage of the many powerful accessibility
features of iOS, including Switch Control and  
VoiceOver, and even provides additional voice
commentary on the actions of characters as  
students control them with code.

Immersive animations. Each section starts  
with an immersive animation that relates  
coding concepts to real life, aiding student
understanding.

Built-in glossary. Definitions help students
understand specific terms.

Helpful hints. Students can get help along  
the way if they get stuck. In many cases, hints
change dynamically as they enter code.

Shortcut Bar. QuickType suggestions for  
code appear at the bottom of the screen that  
let students enter the code they need by just  
tapping the Shortcut Bar.

Onscreen keyboard. A keyboard dedicated to
Swift provides quick access to the numbers and
symbols most commonly used in Swift.

Record and share. Students can record what
they do on screen to demonstrate their work.

Review code. Run code faster or slower, or step
through it to highlight the lines of code as they
execute, making it easier for students to identify
where errors might occur.

Touch to edit. Drag complex structures that
wrap other code, such as loops and function
definitions, around existing code. Just touch the
keyword (such as ‘for’) and the drag controls
appear on screen.

Edit in place. Edit numeric values, colours  
and operators quickly and easily using a
pop-over keypad.

Key Features

Everyone Can Code Curriculum | Overview | Key Features | Support Resources | Course Outlines | Additional Information | Curriculum Correlations

Swift Playgrounds Curriculum Guide | October 2017 6

Learn to Code 1 & 2 Teacher Guide
Designed for use with older primary school and junior high school students,
this Teacher Guide will help any teacher bring Learn to Code 1 & 2 into their
classroom. The lessons highlight key coding concepts while demonstrating
how coding is a way of thinking that can be applied to other subjects and
everyday life. Enhanced activities, review and reflection activities, a grading
rubric and Keynote presentations are included. The guide represents 40 to
45 hours of core coding lessons, with up to 45 hours of supplemental
activities that help students apply what they’ve learned and start designing
their very own app. Curriculum correlations are included, showing alignment
with various national and international curriculum standards for computer
science.

Learn to Code 3 Teacher Guide
The guide is geared toward older primary school and junior high school
students. It includes 20 hours of core coding lessons, with up to 25 hours of
supplemental activities that help students apply what they’ve learned and
start designing their very own app. Building on coding skills from Learn to
Code 1 & 2, it includes story activities, code review lessons, Keynote
presentations, journal prompts, a grading rubric and more, to help teachers
bring these lessons into the classroom. Curriculum correlations are
included, showing alignment with various national and international
curriculum standards for computer science.

Learn to Code 1 & 2: iTunes U course
This iTunes U course brings the Learn to Code 1 & 2 Teacher Guide to life
through video lessons and additional resources. The videos are also a great
way for teachers to see how they can bring the Teacher Guide lessons to life
in a classroom.

Apple Teacher Program: Earn Swift Playgrounds badges
The Apple Teacher Program is a free professional learning program
designed to support and celebrate teachers. It offers self-paced learning
materials, tips, inspiration and news. Apple Teachers can visit the Apple
Teacher Learning Center to complete quizzes on learning and teaching  
with Swift Playgrounds, and earn four new badges. They’ll then receive  
an updated Apple Teacher logo featuring Swift Playgrounds to share  
their accomplishment. 

Support Resources

Everyone Can Code Curriculum | Overview | Key Features | Support Resources | Course Outlines | Additional Information | Curriculum Correlations

Swift Playgrounds Curriculum Guide | October 2017 7

Learn to Code 1
By solving puzzles in a dynamic 3D puzzle world, students will develop  
a set of coding skills to build up their basic programming vocabulary.  
Their coding journey begins with simple commands, functions and loops.
From the start, they’ll write real Swift code — the same code used by
real programmers.

Lesson 0 — Getting Started. Students get an introduction to computer
science and the goals of the course.

Lesson 1 — Think Like a Computer: Commands and Sequences.
Students learn about using commands and sequences in an everyday
situation, then code using commands and sequences.

Lesson 2 — Think Like a Detective: Debugging. Students learn about  
debugging in an everyday situation, then how to debug with code.

Lesson 3 — Think Efficiently: Functions and a Bit of Loops. Students
learn about using functions and for-loops in an everyday situation, then how
to code using functions and for-loops.

Review and Reflect. Students review lessons 1 through 3, review their
portfolios and create a community with peer-to-peer review.

Lesson 4 — Thinking Logically: Conditional Code. Students learn about
using conditional code, Booleans and logical operators, then how to code
using conditional code, Booleans and logical operators.

Lesson 5—Think Again and Again: While Loops. Students learn about
using while-loops in an everyday situation, then how to code using
while-loops.

Lesson 6 — Think the Same Idea: Algorithms. Students learn about using
algorithms in an everyday situation, then how to code using algorithms.

Review and Reflect. Students review coding concepts from lessons 3
through 6, continue reflecting on their portfolios and continue their
community experience.

Learn to Code 2
Students will build on their fundamental knowledge of Swift. They’ll journey
beyond simply solving puzzles and create worlds of their own. And they’ll
learn about variables and types, the coding constructs that allow them to
store and access information. These new skills, along with initialisation and
parameters, will give them even more ways to use code to interact with their
characters and the puzzle world, allowing them to change the rules of the
world itself.

Lesson 7 — Think Like a NewsBot: Variables. Students learn about using
variables in an everyday situation, then how to code using variables.

Lesson 8 — Think Like an Architect: Types. Students learn about  
using types in an everyday situation, then how to code using types  
and initialisation.

Lesson 9 — Think Specifically: Parameters. Students learn about using
parameters in an everyday situation, then how to code using parameters.

Lesson 10 — Think Organised: Arrays. Students learn about using arrays
in an everyday situation, then how to code using arrays.

Milestone Project. Students build their own worlds using the concepts
learned throughout the program, creating a story to go with the world.  
Then they reflect on what they’ve learned using their portfolios and the
community peer-to-peer review.

App Design. Students go through a design cycle that focuses  
on prototyping, much like the process professional app developers use.

Course Outlines

Everyone Can Code Curriculum | Overview | Key Features | Support Resources | Course Outlines | Additional Information | Curriculum Correlations

Swift Playgrounds Curriculum Guide | October 2017 8

Learn to Code 3
Learn to Code 3 helps students expand the coding skills they learned in
previous lessons to start thinking more like an app developer. Learn to Code
1 & 2 is a recommended prerequisite for Learn to Code 3.

Encountering the interstellar space of Blu’s universe, students build a set of
creative tools as they explore powerful coding concepts that professional
developers use. As they learn about graphics and coordinates, they’ll be
able to place and manipulate images, then combine these techniques with
touch events to paint artistic shapes in space.

After learning about touch events, students dive into strings, giving them a
way to bring their voice into Blu’s silent universe. Finally, they’ll explore event
handlers as they use real events such as finger movements or taps to
trigger their code. With event handlers, they’ll create animated aliens or turn
the universe into a giant musical instrument. By the time they finish, they’ll
be combining their skills expertly, writing their most advanced code yet!

Lesson 1 — Introduction to Learn to Code 3: Coordinates. Students learn
about coordinates; review algorithms, for-loops and arrays; and then code  
using a combination of concepts. They also discuss what makes a great  
visual story.

Lesson 2 — Think Like an App Designer: Touch Events. Students review
variables, types and initialisation by analysing their favourite apps, then
create and initialise their own image tools in Swift Playgrounds. They also
research how images influence visual stories.

Lesson 3 — Think Like an Editor: Strings. Students learn about strings in
an everyday situation, then create their own text tools in Swift Playgrounds.
They also research how text influences visual stories.

Lesson 4 — Think Like an Animator: Event Handlers. Students learn  
about event handlers by designing their own games. They then create  
their own action tools in Swift Playgrounds and research how interactivity
impacts visual stories.

Milestone Project. Students code their own visual stories in  
Swift Playgrounds.

App Design. Students go through a design cycle that focuses on
prototyping, much like the process professional app developers use.

Course Outlines (continued)

Everyone Can Code Curriculum | Overview | Key Features | Support Resources | Course Outlines | Additional Information | Curriculum Correlations

Swift Playgrounds Curriculum Guide | October 2017 9

Additional Information

Swift Playgrounds requires iOS 10 or later and works on:
• iPad Pro (9.7-inch)

• iPad Pro (12.9-inch)

• iPad

• iPad Air 2

• iPad Air

• iPad mini 4

• iPad mini 3

• iPad mini 2

Download the Swift Playgrounds resources
• Learn to Code 1 & 2 iTunes U Course

• Learn to Code 1 & 2 Teacher Guide

• Learn to Code 3 Teacher Guide

• Swift Playgrounds app

Download the App Development with Swift guides
• Intro to App Development with Swift

• Intro to App Development with Swift Teacher Guide

• App Development with Swift

• App Development with Swift Teacher Guide

Everyone Can Code Curriculum | Overview | Key Features | Support Resources | Course Outlines | Additional Information | Curriculum Correlations

Download the Get Started with Code resources
• Tynker Coding for Kids

• codeSpark Academy

• Get Started with Code 1

• Get Started with Code 2

Additional resources
• Learn more about Swift Playgrounds.

• Learn more about the Everyone Can Code program.

• Learn more about Swift.

• Connect with other educators in the Apple Developer Forums.

https://itunes.apple.com/au/course/swift-playgrounds-learn-to-code-1-2/id1153807202
https://itunes.apple.com/au/book/swift-playgrounds-learn-to/id1118578018?mt=11%5D
https://itunes.apple.com/au/book/swift-playgrounds-learn-to/id1173709121?mt=11%5D
https://itunes.apple.com/au/app/swift-playgrounds/id908519492?mt=8%5D
https://itunes.apple.com/au/book/app-development-with-swift/id1118575552?mt=11%5D
https://itunes.apple.com/au/book/app-development-with-swift/id1118577558?mt=11%5D
https://itunes.apple.com/au/book/id1219117996
https://itunes.apple.com/au/book/id1219118093
https://itunes.apple.com/au/course/swift-playgrounds-learn-to-code-1-2/id1153807202
https://itunes.apple.com/au/book/swift-playgrounds-learn-to/id1118578018?mt=11%5D
https://itunes.apple.com/au/book/swift-playgrounds-learn-to/id1173709121?mt=11%5D
https://itunes.apple.com/au/app/swift-playgrounds/id908519492?mt=8%5D
https://itunes.apple.com/au/book/app-development-with-swift/id1118575552?mt=11%5D
https://itunes.apple.com/au/book/app-development-with-swift/id1118577558?mt=11%5D
https://itunes.apple.com/au/book/id1219117996
https://itunes.apple.com/au/book/id1219118093
https://itunes.apple.com/au/app/tynker-learn-to-code-programming-made-easy/id805869467?mt=8
https://itunes.apple.com/au/app/codespark-academy-with-the-foos-coding-for-kids/id923441570?mt=8
https://itunes.apple.com/au/book/id1226776727
https://itunes.apple.com/au/book/id1226776857
http://www.apple.com/au/swift/playgrounds
http://www.apple.com/au/education/everyone-can-code/
http://www.apple.com/au/swift/
https://forums.developer.apple.com/welcome
https://itunes.apple.com/au/app/tynker-learn-to-code-programming-made-easy/id805869467?mt=8
https://itunes.apple.com/au/app/codespark-academy-with-the-foos-coding-for-kids/id923441570?mt=8
https://itunes.apple.com/au/book/id1226776727
https://itunes.apple.com/au/book/id1226776857
http://www.apple.com/au/swift/playgrounds
http://www.apple.com/au/education/everyone-can-code/
http://www.apple.com/au/swift/
https://forums.developer.apple.com/welcome

Swift Playgrounds Curriculum Guide | October 2017 10

The Learn to Code 1 & 2 and Swift Playgrounds exercises are targeted at older primary school and junior high school students, and align with the Processes
and Production Skills strand of the Australian Curriculum: Digital Technologies for years 5–10. Teachers can follow a structured pathway through the Teacher
Guides while mapping to the corresponding Digital Technologies content description.

Curriculum Correlations: Learn to Code 1, 2 & 3

Everyone Can Code Curriculum | Overview | Key Features | Support Resources | Course Outlines | Additional Information | Curriculum Correlations

Key: •
Aligns with curriculum

Alignment between Learn to Code 1 & 2 and Australian Curriculum: Digital Technologies — Years 5–10 Processes and Production Skills Strand

Content description

Years 5–6

ACTDIP016 Acquire, store and validate different types of data, and use a range of software to interpret and visualise data and create information •
ACTDIP017 Define problems in terms of data and functional requirements, drawing on previously solved problems •
ACTDIP018 Design a user interface for a digital system •
ACTDIP019 Design, modify and follow simple algorithms involving sequences of steps, branching and iteration (repetition) •
ACTDIP020 Implement digital solutions as simple visual programs involving branching, iteration (repetition) and user input •
ACTDIP021 Explain how student solutions and existing information systems are sustainable and meet current and future local community needs •
ACTDIP022 Plan, create and communicate ideas and information, including collaboratively applying agreed ethical, social and technical protocols online

Years 7–8

ACTDIP026 Analyse and visualise data using a range of software to create information, and use structure data to model objects or events •
ACTDIP027 Define and decompose real-world problems, taking into account functional requirements and economic, environmental, social, technical and usability constraints •
ACTDIP028 Design the user experience of a digital system, generating, evaluating and communicating alternative designs •
ACTDIP029 Design algorithms represented diagrammatically and in English, then trace algorithms to predict output for a given input and to identify errors •
ACTDIP030 Implement and modify programs with user interfaces that involve branching, iteration and functions in a general-purpose programming language •
ACTDIP031 Evaluate how student solutions and existing information systems meet needs, are innovative, and take into account future risks and sustainability •
ACTDIP032 Plan and manage projects that create and communicate ideas and information collaboratively online, taking into account safety and social contexts

Years 9–10

ACTDIP037 Analyse and visualise data to create information and address complex problems, then model processes, entities and their relationships using structured data

ACTDIP038 Define and decompose real-world problems, taking into account functional and non-functional requirements and interviewing stakeholders to identify needs •
ACTDIP039 Design the user experience of a digital system by evaluating alternative designs against criteria including functionality, accessibility, usability and aesthetics •
ACTDIP040 Design algorithms represented diagrammatically and in structured English, and validate algorithms and programs using tracing and test cases •
ACTDIP041 Implement modular programs, and apply selected algorithms and data structures, including using an object-oriented programming language •
ACTDIP042 Critically evaluate how students’ solutions and existing information systems and policies consider future risks and sustainability, and provide opportunities for

innovation and enterprise

ACTDIP043 Create interactive solutions for sharing ideas and information online, taking into account safety, social contexts and legal responsibilities

ACTDIP044 Plan and manage projects using an iterative and collaborative approach, identifying risks and considering safety and sustainability

Swift Playgrounds Curriculum Guide | September 2017 11

Everyone Can Code Curriculum | Overview | Key Features | Support Resources | Course Outlines | Additional Information | Curriculum Alignment

© Australian Curriculum, Assessment and Reporting Authority (ACARA) 2010 to present, unless otherwise indicated. This material was downloaded from the Australian Curriculum website (http://www.australiancurriculum.edu.au) (accessed 1 September
2017) and was not modified. The material is licensed under CC BY 4.0. Version updates are tracked on the Curriculum version history page of the Australian Curriculum website. ACARA does not endorse any product that uses the Australian Curriculum or
make any representations as to the quality of such products. Any product that uses material published on this website should not be taken to be affiliated with ACARA or have the sponsorship or approval of ACARA. It is up to each person to make their
own assessment of the product, taking into account matters including, but not limited to, the version number and the degree to which the materials align with the content descriptions (where relevant). Where there is a claim of alignment, it is important to
check that the materials align with the content descriptions (endorsed by all education Ministers), not the elaborations (examples provided by ACARA).

Features are subject to change. Some features may not be available in all regions or all languages.

© 2017 Apple Inc. All rights reserved. Apple, the Apple logo, iPad, iPad Air, iPad Pro, QuickType and Xcode are trademarks of Apple Inc., registered in the US and other countries. iPad mini and Swift are trademarks of Apple Inc. App Store and Genius Bar
are service marks of Apple Inc., registered in the US and other countries. Other product and company names mentioned herein may be trademarks of their respective companies. Product specifications are subject to change without notice. This material
is provided for information purposes only; Apple assumes no liability related to its use. October 2017

http://www.australiancurriculum.edu.au/
https://creativecommons.org/licenses/by/4.0
http://www.australiancurriculum.edu.au/Home/CurriculumHistory
http://www.australiancurriculum.edu.au/
https://creativecommons.org/licenses/by/4.0
http://www.australiancurriculum.edu.au/Home/CurriculumHistory

