
 1

Table of Contents  

Introduction 

Commands 
• Lesson 1: Daily Routines

• Lesson 2: Story Order

• Lesson 3: Dance Moves


Functions 
• Lesson 1: Paper Gem

• Lesson 2: Songfest

• Lesson 3: My Calming Function


Loops 
• Lesson 1: Repeating Petals

• Lesson 2: Obstacle Course

• Lesson 3: Drumming Patterns


Variables 
• Lesson 1: Sink or Float

• Lesson 2: Word Game

• Lesson 3: All About Me


App Design 

Facilitator Resources



 2

Everyone Can Code Early Learners 
is designed to help educators and 
families introduce coding in the 
early grades, when learners are first 
developing computational thinking 
skills. Through these lessons, 
learners in kindergarten through 
third grade will explore, discover, 
and play to build a foundation in 
core coding concepts.



 3

Introduction

Instructional Design 
This guide is divided into four modules, as well as a culminating app design project. Every module contains three lessons, each 
of which focuses on one concept related to coding. Within each lesson, you’ll find three activities: Explore, Discover, and Play. 
The activities can be broken up into multiple sessions or days.

Explore 
Introduce and 
discuss the 
coding concept

Discover 
Build familiarity with 
the concept through 
creative activities

~25 

minutes

Play 
• Code along with Byte in the Swift Playgrounds app

• Practice coding in companion worksheets and Keynote activities

• Bring Byte’s world into the real world with unplugged floor puzzle coding games

~25 

minutes

Day 1: Discussion and 
hands-on learning

Day 2: Connecting 
learning to code



 4

Scope and Sequence 
The four modules in this guide are designed to be used across kindergarten to third grade, and they can be done in any order. 
We encourage you to use the App Design module at any time or even multiple times a year as learners grow their understanding of 
code and apps.


Example:

Continue Learning 
For teaching fourth to eighth graders, the Everyone Can Code 
Puzzles, along with the App Design Journal and the App 
Showcase Guide, offer more than 45 hours of learning.

Grade Module Culminating project Approximate total time

Kindergarten Commands App Design 4 hours

First Functions App Design 4 hours

Second Loops App Design 4 hours

Third Variables App Design 4 hours

Introduction

Download 
Everyone 
Can Code 
Puzzles

Download 
App 
Showcase 
Guide

Download 
App Design 
Journal

https://apple.co/everyonecancode-puzzles-teachers_ENCA?itscg=edu&itsct=eccode_launch22_sc22_na_enca
https://apple.co/everyonecancode-puzzles-teachers_ENCA?itscg=edu&itsct=eccode_launch22_sc22_na_enca
https://apple.co/everyonecancode-puzzles-teachers_ENCA?itscg=edu&itsct=eccode_launch22_sc22_na_enca
https://apple.co/everyonecancode-puzzles-teachers_ENCA?itscg=edu&itsct=eccode_launch22_sc22_na_enca
https://apple.co/developinswiftappdesignjournal_CA_E
https://apple.co/developinswiftappdesignjournal_CA_E
https://apple.co/developinswiftappdesignjournal_CA_E
https://apple.co/developinswiftappshowcaseguide_EN-CA
https://apple.co/developinswiftappshowcaseguide_EN-CA
https://apple.co/developinswiftappshowcaseguide_EN-CA
https://apple.co/developinswiftappshowcaseguide_EN-CA


 5

Learner Portfolios (Optional) 
Throughout these modules, collect 
artifacts from the activities to create 
portfolios with your learners.

Module Lesson Suggested artifacts

Commands

Daily Routines • Issuing Commands worksheet

• Adding a New Command worksheet

Story Order • Story Order plot point picture

• Story Order group picture

Dance Moves • Dance Moves cards

• Dance Moves video (optional)

Functions

Paper Gem
• Paper Gem shape

• Composing a New Behavior worksheet

• Creating a New Function worksheet

Songfest • Songfest concert video or written function

My Calming Function • My Calming Function drawing or video

• Collect, Toggle, Repeat worksheet

Loops

Repeating Petals
• Repeating Petals

• Using Loops worksheet

• Looping All the Sides worksheet

Obstacle Course • Video or pictures of the obstacle course (optional)

Drumming Patterns • To the Edge and Back worksheet

• Video or pictures of the drumming (optional)

Variables

Sink or Float • Sink or Float

• Keeping Track worksheet

Word Game • Word games

All About Me • All About Me

• All About You

App Design
• What’s an App?

• My App Design

• App Design prototype 

Introduction



 6

Getting Started with Swift Playgrounds on iPad or Mac 

Before diving into the lessons, be sure that you’ve downloaded Swift Playgrounds, Pages, and Keynote. Visit Teaching 
Code with Swift Playgrounds in the Apple Education Community to explore teaching and learning resources.

The modules in this guide use different combinations of playgrounds. Here’s what you’ll need for each module:

Module Playgrounds How to Download in Swift Playgrounds

Commands

Learn to Code 1 Blu’s Adventure

Blu’s Adventure can be found in the Books section of 
the More Playgrounds screen.

Functions

Learn to Code 1

Loops

Learn to Code 1

Variables

Learn to Code 2 Rock, Paper, Scissors Code Machine

Rock, Paper, Scissors and Code Machine can  
be found in the Books section of the More 
Playgrounds screen.

App Design

Visit Apple Support to get help with Swift Playgrounds.

Introduction

https://apps.apple.com/ca/app/id908519492?itscg=edu&itsct=eccode_launch22app_sc22_na_enca
https://apps.apple.com/ca/app/pages/id361309726?itscg=edu&itsct=eccode_launch22app_sc22_na_enca
https://apps.apple.com/ca/app/keynote/id361285480?itscg=edu&itsct=eccode_launch22app_sc22_na_enca
https://education.apple.com/#/asset/part/T021339A?cid=pm-enca-atlc-na-edu-eccode-general23
https://education.apple.com/#/asset/part/T021339A?cid=pm-enca-atlc-na-edu-eccode-general23
https://support.apple.com/en-ca/guide/playgrounds-ipad/welcome/ipados?cid=pm-enca-pdf-doc-edu-eccode-launch22


 7

Facilitator Tips 
To get the most out of the lessons with your learners, try some of these tips.


Explore and Discover Activities:

• Simplify any syntax or special casing when writing or showing code — for example:


- var names = ["Rose", "Sam", "Joy"] —-> var names = Rose, Sam, Joy 
- var ages = [7, 8, 7, 8, 7] —-> var ages = 7, 8, 7, 8, 7

- var myFavoriteColor =    —-> var my favorite color =  


Play Activities: 
• To make the Swift Playgrounds app even more simple for your early 

learners, follow the instructions in the lesson plans. These include:

- Read the introductions as a whole group

- Give learners pared-down directions for the accompanying 

worksheets so they can come up with their own solutions

- Use one facilitator iPad or Mac to solve the puzzles in the app


• let and var: The let keyword isn’t covered in this guide. To avoid 
confusion in Swift Playgrounds, please change any let keywords to 
var before showing the pages to learners. In the playgrounds that we 
recommend, the two keywords are interchangeable.

- let = variable doesn’t change

- var = variable does change


Extensions: 
• Expand the floor Play activities to include numeracy, literacy, sight 

words, spelling, and more. Try the floor Play activity in the Functions 
module for inspiration.


• Personalize the floor Play activities by having learners make up their 
own cards for commands, such as twirl() or jump().

Introduction 
page

Playground page

Introduction



 8

Commands 

Overview 
Lesson 1: Daily Routines 
• Explore: Discussion relating baking to commands

• Discover: Daily Routines activity

• Play: Issuing Commands and Adding a New Command


Lesson 2: Story Order 
• Explore: Discussion relating the order of story plots to commands

• Discover: Story Order activity

• Play: Floor puzzle game


Lesson 3: Dance Moves 
• Explore: Discussion relating dance moves to commands

• Discover: Dance Moves activity

• Play: Blu’s Adventure Preview


Learners Will Be Able To 
• Use everyday examples to describe step-by-step instructions

• Put instructions in order so they make sense

• Test and debug instructions and code


Vocabulary 
• Sequence: The order in which things happen

• Step: One action in a larger process

• Modify: To change

• Command: Code that tells an application to perform a specific action

• Bug: An error in code

• Debug: To find and fix errors in code




 9

Explore 
Objective: Introduce the concept 
of commands by relating it to 
baking brownies.


Discussion:

• Would they follow a brownie recipe?

• Would they follow the recipe’s steps 

in order?


Takeaway: Each step or instruction 
in a recipe is like a command in code. 
Have learners come up with 
commands of their own.

Discover 
Objective: Model the process of a daily routine by identifying step-by-step instructions.


Materials: Washing Your Hands cards


Directions: 
1. Shuffle the deck of Washing Your Hands cards, and lay them out on a table or put 

them up on the board. The cards should be out of order.

2. Ask learners if they think there’s a bug in your handwashing sequence.

3. Ask learners to debug — or fix — the instructions by moving one card at a time to its 

correct location.


Alternative: 
Have learners work in pairs or small groups, and give each group a set of cards.


Extension: 
Have learners come up with their own set of step-by-step instructions for something 
they do every day and make pictures of the specific steps.


Download the Washing Your Hands cards

CommandsLesson 1: Daily Routines

https://education-static.apple.com/code-early-learners/1.1-commands-washhands.pdf


 10

CommandsLesson 1: Daily Routines

  
Learn to Code 1 

Facilitator materials: 
• iPad or Mac

• Swift Playgrounds app

• Learn to Code 1 playground

• Projector or display


Learner materials:  
• Issuing Commands  

and Adding a New 
Command worksheets


• Pencils

• Extra paper (optional)


Download the Learn to 
Code worksheets

Play 
Objective: Learners will be able to add the commands in the correct order to 
collect their first gems in Learn to Code 1 in the Swift Playgrounds app.


Directions: 
1. Project the introduction page of the “Commands” chapter in the Learn to Code 1 

playground on a screen.

2. Introduction:


• Read through the pages as a class, stopping for questions if needed.

3. Issuing Commands:


• Review the two commands that learners will need to get Byte to the gem, 
moveForward() and collectGem().


• Ask learners to experiment with ways to direct Byte from the start arrow to the 
gem and collect it. They can record the commands on the worksheet or on a 
separate piece of paper.


• Gather ideas from the class, and write the code in the Swift Playgrounds app to 
complete the puzzle. Click or tap Run My Code.


• Try several different ideas.

• Celebrate with Byte!


Extension: 
If learners are ready, move to the next page, Adding a New Command. Here 
learners will use a new command, turnLeft().

https://education-static.apple.com/code-early-learners/1.1-commands-issuingaddingnew.pdf
https://education-static.apple.com/code-early-learners/1.1-commands-issuingaddingnew.pdf


 11

Commands

Explore 
Objective: Explore how books 
follow a sequence (beginning to 
middle to end) in order for the 
stories to make sense.


Discussion: 
• Ask learners if books follow 

a sequence.

• What would happen if the 

beginning, middle, and end of 
a book were out of order?


• Explore several examples.


Takeaway: Make the connection to 
code, emphasizing how important it 
is to give coding commands in the 
correct order, just like the plot 
points of a story.

Lesson 2: Story Order

Discover 
Objective: After creating pictures of various plot points from a story, learners will be 
able to put the pictures in order to accurately re-create the story.


Facilitator materials: 
• Whiteboard

• Markers


Learner materials: 
• Paper

• Markers or coloured pencils

• Alternative: iPad devices and a drawing app


Directions: 
1. Read a story that learners know well. As a class, determine the primary plot points 

in the story. Ideally, come up with four to six plot points.

2. Create small groups that have the same number of learners as there are plot 

points — for example, four plot points equals four learners per group.

3. Have each learner in the group draw one of the plot points.

4. Groups take turns standing in front of the room, with learners holding their plot 

pictures out of order.

5. The audience reorders the pictures, moving one at a time.

6. Take a photo of each group once learners are in the correct order.


Extension or Alternative: 
Have each group of learners work on a different story, determining the plot points as 
a group before drawing the pictures.



 12

CommandsLesson 2: Story Order

Facilitator materials: 
• Painter’s tape


Learner materials:

• Role cards

• Command cards: 
moveForward(), 
turnLeft(), turnRight(), 
and collectGem()


• Gem

• Byte

• Arrow


Download the materials


Download the 
alternative activity

Play 
Objective: Learners will be able to guide Byte through a physical grid to a gem 
using directional commands.


Preparation: Learners will be working in groups of three. Use painter’s tape to 
create a four-by-four grid on the floor for each group.


Directions: 
1. Distribute the materials, and divide learners into groups of three. 

2. Read through each role, and assign each person in the group a role for the 

first game.

3. Have learners play the game, starting with the designer role.

4. Play three times, each time rotating the role cards.


Roles:

• Designer: Place the gem and the starting arrow on the grid.

• Programmer: With your peers’ help, place the command cards on or next to 

the grid to direct Byte to the gem and collect it.

• Tester: Starting with Byte on the arrow, follow the command cards to move 

Byte around the grid. If you collect the gem, celebrate! If you don’t, work as a 
team to debug, or fix, the code.


Alternative:

If learners are working with you individually or learning at home, they can play 
this game on their own using the downloadable alternative Keynote activity.

DESIGNER
PROGRAMMER

moveForward()

collectGem()

moveForward()

collectGem()turnRight()

turnLeft()

TESTER

https://education-static.apple.com/code-early-learners/1.2-commands-floorpuzzle.pdf
https://education-static.apple.com/code-early-learners/1.2-commands-play.key
https://education-static.apple.com/code-early-learners/1.2-commands-play.key


 13

Commands

Explore 
Objective: Explore the idea that 
coding can be creative!


Discussion:

• Ask learners if they’ve ever learned 

a dance.

• Did the dance have an order of steps 

to follow?

• How did they know what to do next?

• Do the dance moves have names?

• Do learners ever use the same 

moves at different times in a dance, 
or in different dance routines?


Takeaway: Help learners make the 
connection that coding is creative and 
that — like choreographing a dance — 
coders can make up new commands 
and then put them together in different 
and interesting ways.

Lesson 3: Dance Moves

Discover 
Objective: Create a short dance routine, along with cards to represent the dance 
moves. Each Dance Moves card is like a command in the Learn to Code playground.


Learner materials: 
• iPad devices

• Keynote app

• Camera app

• Space to dance


Directions:  
1. Have pairs or small groups of learners create a short dance routine.

2. Once learners establish the routine, they’ll make cards of the different dance moves. 

Learners should include a drawing and name of the move on each card, getting as 
creative and silly as possible.


3. Each group performs their dance — then have a dance party as a whole class!


Alternative: 
Learners can use the downloadable Dance Moves cards below to create their dance, 
or they can use the cards as examples when making their own cards. 

Extension: 
Learners make a video of their dance to show to the group.


Download the Dance Moves cards

https://education-static.apple.com/code-early-learners/1.3-commands-dance.key


 14

CommandsLesson 3: Dance Moves

Play 
Objective: Play with the Preview in Blu’s Adventure, including Astrodance.


Directions: 
1. Project the Blu’s Adventure playground on a screen.

2. Introduction:


• Read through the Preview page as a class, stopping for questions if needed.

• Click or tap Run My Code when suggested. Try out Draw, Kaleido, Play, 

Hello, and Goodbye as you read about each one.

• Click or tap Clear to clear the universe.


3. Astrodance:

• Click or tap the Astrodance button multiple times, and/or invite students to 

come up and tap the button.

4. Code:


• Scroll down to the first line of code and replace the emoji in the string with 
anything you want, including words or letters.


let emoji = " ❤ 🧡 💛 💚  💙 💜 "

• Change the number of dancers by typing in a new number.


let numberOfDancers = 500

Blu’s Adventure 

Facilitator materials:

• iPad or Mac

• Swift Playgrounds app

• Blu’s Adventure playground

• Projector or display


Learner materials:

• iPad devices (optional)



 15

Functions 

Overview 
Lesson 1: Paper Gem

• Explore: Discussion about step-by-step instructions

• Discover: Paper Gem activity

• Play: Composing a New Behavior and Creating a New Function


Lesson 2: Songfest 
• Explore: Discussion about how to name a function

• Discover: Songfest activity

• Play: Floor puzzle game


Lesson 3: My Calming Function 
• Explore: Discussion about solving problems in multiple ways

• Discover: My Calming Function activity

• Play: Collect, Toggle, Repeat


Learners Will Be Able To 
• Deconstruct a large problem or task into smaller steps

• Create a series of steps to solve a problem or complete a task

• Name functions

• Test and debug code


Vocabulary 
• Function: A named set of commands that can be run 

whenever needed

• Toggle: To switch on or off




 16

FunctionsLesson 1: Paper Gem

Explore 
Objective: Explore the idea of 
packaging a series of commands 
and giving it a name.


Discussion: Decide on a daily 
routine to focus on as a class. 
Have learners identify the name of 
their daily routine and the steps 
that make it up.


Example: Bedtime routine

• Step 1: Brush teeth

• Step 2: Use the restroom

• Step 3: Read

• Step 4: Say goodnight

• Step 5: Turn out the lights


Takeaway: Coming up with a set  
of instructions and giving it a name 
is the same concept as creating 
a function.


Extension: Ask learners if the 
instructions for any of their steps 
could be more specific. For 
example, what are the specific  
steps to brushing your teeth?

Discover 
Objective: Learners will begin by following directions to make a paper gem, 
then they’ll write or draw the directions for making another shape of their choice.


Learner materials: 
• Paper

• Scissors

• Pencils

• iPad devices (optional)


Directions: 
Show learners how to make a paper gem:

1. Fold a piece of paper in half.

2. Draw a line from the top corner on the folded side to an 

inch or two above the centre of the paper.

3. Draw another line from where the first line ends to the 

bottom corner on the folded side.

4. Cut along the lines you drew.

5. Remove the gem from the scrap paper, and unfold it.


Ask learners to make their own shapes:

1. Break learners into small groups.

2. Have groups decide on a shape to make.

3. Allow time for learners to practice making the shape once or twice.

4. Have learners write or draw the directions for making the shape, then give 

their directions a name, such as “Make a Circle” or “The Letter T.”


Alternative: 
Make a video showing how to make their shapes.




 17

Functions

ခ

Play 
Objective: Working as a whole group, learners will be able to break down the steps 
needed to get Byte to the gem.


Directions: 
1. Project the Learn to Code 1 playground on a screen. Navigate to the “Functions” 

chapter in Learn to Code 1.

2. Introduction:


• Read through the pages as a class, stopping for questions if needed.

3. Composing a New Behavior:


• Review the commands moveForward(), turnLeft(), and collectGem() — 
keeping in mind that you don’t have a turnRight() command. 

• Have learners experiment with ways to direct Byte from the start arrow to the 
gem and collect it. They record the commands on the worksheet or on a 
separate piece of paper.


• Gather ideas from the class, and write the code in the Swift Playgrounds app to 
complete the puzzle. Click or tap Run My Code.


• Try several different ideas.

• Celebrate with Byte!


4. Creating a New Function:

• Based on what they learned in the last Playground page, Composing a New 

Behavior, have learners come up with ideas to create turnRight() function.

• Using their turnRight() function, have learners experiment with ways to direct 

Byte from the start arrow to the closed switch and toggle it.

• Gather ideas from the class, and write the code in the Swift Playgrounds app to 

complete the puzzle. Click or tap Run My Code.

• Try several different ideas.

• Celebrate with Byte — that was a hard puzzle!


Lesson 1: Paper Gem

  
Learn to Code 1 

Facilitator materials: 
• iPad or Mac

• Swift Playgrounds app

• Learn to Code 1 playground

• Projector or display


Learner materials: 
• Composing a New Behavior 

and Creating a New 
Function worksheets


• Pencils

• Extra paper (optional)


Download the Learn to 
Code worksheets


https://education-static.apple.com/code-early-learners/2.1-functions-composingcreating.pdf
https://education-static.apple.com/code-early-learners/2.1-functions-composingcreating.pdf


 18

FunctionsLesson 2: Songfest

Explore 
Objective: Apply knowledge of 
commands and functions to songs 
by giving them descriptive names.


Discussion: Have learners come  
up with a variety of songs and  
give each one a descriptive  
function name.


Example: For the song “Twinkle, 
Twinkle, Little Star,” the function  
call might be singTwinkle(),  
but singSong1() wouldn’t be a 
good name because the first song 
could change.


Takeaway: Naming functions with 
descriptive names is important 
because it makes code easier for 
you and others to understand.

Discover 
Objective: Learners will create a concert by calling different song commands in a 
concert function.


Facilitator materials: 
• iPad or Mac

• Projector or display

• Whiteboard

• Markers


Directions: 
1. Help learners create function names for several songs — for example, 
singHappyBirthday().


2. As a group, choose the order in which to sing the songs.

3. Write a function definition for a concert, and fill in the function with the 

song commands.


Example: 
func createConcert() { 

 singHappyBirthday() 
 singTwinkleTwinkle() 
 singMaryHadALittleLamb() 

} 
createConcert() 

Alternative: 
Learners sing in small groups, with each group coming up their own list of songs, song 
function names, and order to sing the songs in. Each group then performs their songs 
and makes a video of their concert.




 19

Functions

2 6 8 4

10 7 4 3
8 11 9

3 5 12

2 6 8 4

10 7 4 3
8 11 9

3 5 12

turnLeft()
turnRight()

collectGem()

moveForward()

Play 
Objective: Learners will solve a simple equation, place a gem on the answer, then guide 
Byte through the grid using directional commands.


Preparation: Learners will be working in groups of three. Use painter’s tape to create a 
four-by-four grid on the floor for each group. Place the starting arrow inside one square, 
and place one number inside each remaining square. 

Directions: 
1. Distribute the materials, and divide learners into groups of three.

2. Read through each role, and assign each person in the group a role for the first game.

3. Have learners play the game, starting with the designer role.

4. Play three times, each time rotating the role cards.


Roles: 
• Designer: Roll two dice. With the help of your peers, add the two numbers together 

and place the gem on a grid square that has the sum.

• Programmer: With your peers’ help, place the command cards on or next to the grid 

to direct Byte to the gem and collect it.

• Tester: Starting with Byte on the arrow, follow the command cards to move Byte 

around the grid. If you collect the gem, celebrate! If you don’t, work as a team to 
fix the code.


Alternative:

If learners are working with you individually or learning at home, they can play this 
game on their own using the downloadable alternative Keynote activity.


Lesson 2: Songfest

Facilitator materials: 
• Painter’s tape

• One set of printed numbers for 

each grid


Learner materials:  
• Role cards

• Command cards: 
moveForward(), 
turnLeft(), turnRight(), 
and collectGem() 

• Gem

• Byte

• Arrow

• Two dice


Download the materials


Download the 
alternative activity

https://education-static.apple.com/code-early-learners/2.2-functions-floorpuzzle.pdf
https://education-static.apple.com/code-early-learners/2.2-functions-play.key
https://education-static.apple.com/code-early-learners/2.2-functions-play.key


 20

FunctionsLesson 3: My Calming Function

Explore 
Objective: Learners will understand 
that there’s usually more than one 
way to solve a problem.


Discussion: Have learners think 
about a problem they’ve had, then 
share the ways they solved it. 
Ask the group if anyone would solve 
that problem in a different way. 
Explore several different problems 
and solutions.


Takeaway: Help learners make the 
connection to code and learn that 
there’s usually more than one way to 
solve a programming problem.

Discover 
Objective: Learners will write a function for their calming technique and give it a name.


Learner materials:

• My Calming Function worksheet

• Pencils

• Coloured pens or pencils


Directions: 
Tip: It’s best that learners work on this activity individually, if possible.

1. Ask learners to brainstorm ways they calm themselves down either at home or at 

school when they’re upset. Have them break down their calming techniques 
into steps.


2. Distribute the My Calming Function worksheet, and ask learners to draw the steps of 
their calming technique.


3. Have learners give their calming technique a name. They can use camel case — for 
example, countToTen() — or just use a short sentence, such as “Count to ten.”


Extensions: 
Unplugged: Have learners act out their calming technique in small groups or in front of 
the class.


With iPad: Learners make a video of their calming technique to share with the class.


Download the My Calming Function worksheet

1 2
3

https://education-static.apple.com/code-early-learners/2.3-functions-calming.pdf


 21

Functions

Play 
Objective: Learners will be able to write a function composed of several different 
types of commands, then use that function to complete a puzzle.


Directions: 
1. Project the Collect, Toggle, Repeat page in the Learn to Code 1 playground on 

a screen, pointing out the empty function that learners will help complete.

2. Collect, Toggle, Repeat:


• Review the commands moveForward(), turnLeft(), turnRight(), 
collectGem(), and toggleSwitch(). 

• Have learners try to identify the parts of the puzzle that repeat, then use their 
ideas to complete the function in the app and give it a name.


• Have learners invent a symbol for the function and record the symbol and 
function name in the commands key on the worksheet.


• With the additional command, learners experiment with ways to direct Byte 
to collect all gems and toggle all switches. They record the commands on 
the worksheet or on a separate piece of paper.


• Gather ideas from the class, and write the code in the Swift Playgrounds 
app to complete the puzzle. Click or tap Run My Code.


• Try several different solutions.

• Celebrate as a class — this was a hard puzzle!


  
Learn to Code 1 

Facilitator materials: 
• iPad or Mac

• Swift Playgrounds app

• Learn to Code 1 playground

• Projector or display


Learner materials:  
• Collect, Toggle, Repeat 

worksheet

• Pencils

• Extra paper (optional)


Download the Learn to 
Code worksheet

Lesson 3: My Calming Function

https://education-static.apple.com/code-early-learners/2.3-functions-collect.pdf
https://education-static.apple.com/code-early-learners/2.3-functions-collect.pdf


 22

Loops 

Overview 
Lesson 1: Repeating Petals

• Explore: Discussion relating repeating steps in code to real life

• Discover: Repeating Petals activity

• Play: Using Loops and Looping All the Sides


Lesson 2: Obstacle Course 
• Explore: Discussion about stopping points in a loop

• Discover: Obstacle Course activity

• Play: Floor puzzle game


Lesson 3: Drumming Patterns 
• Explore: Discussion about loops in music

• Discover: Drumming Patterns activity

• Play: To the Edge and Back


Learners Will Be Able To 
• Identify a loop in code

• Deconstruct a large problem or task into smaller steps

• Create a sequence of commands and repeat that sequence using a loop

• Test and debug instructions and code


Vocabulary 
• Loop: A block of code that repeats a certain number of times 



 23

LoopsLesson 1: Repeating Petals

Explore 
Objective: Connect the idea of 
loops to real life.


Discussion: Explore times that 
learners might repeat a task or 
step in real life.


Examples: 

• Walking

• Biking

• Sewing, knitting, or crocheting


Takeaway: Loops repeat a 
command or a set of commands 
as many times as you specify.


Discover 
Objective: Learners will begin to explore the concept of loops by making a 
unique flower.


Learner materials: 
• Repeating Petals worksheet

• Coloured paper

• Pencils

• Scissors

• Glue sticks

• Dice


Directions: 
1. Learners draw a single petal — about the length of the palm of their hand —  

on a piece of coloured paper and cut it out. This will be their petal template for 
their flower.


2. Each learner then rolls two dice, adds the numbers together, and fills in the missing 
number in the loop on their Repeating Petals worksheet. This is the number of petals 
that their flower will have.


3. Using their petal template, learners trace their petal on coloured paper and cut out 
the correct number of petals for their flower.


4. Using the Repeating Petals worksheet, learners assemble their flower and glue the 
parts in place.


Download the Repeating Petals worksheet

https://education-static.apple.com/code-early-learners/3.1-loops-repeatingpetals.pdf


 24

Loops

Play 
Objective: Learners will be able to write code inside a loop to collect all the gems.


Directions: 
1. Project the “For Loops” chapter introduction page in the Learn to Code 1 

playground on a screen.

2. Introduction:


• Read through the pages as a class, stopping for questions if needed.

3. Using Loops:


• Show learners how portals work, and review the commands moveForward(), 
turnLeft(), turnRight(), and collectGem().


• Have learners experiment with ways to direct Byte from the start arrow to the 
gems and collect them, noticing which commands repeat. They record the 
commands on the worksheet or on a separate piece of paper.


• Gather ideas from the class, and write the code in the Swift Playgrounds app 
to direct Byte to collect the first gem and walk to the portal.


• Ask learners how many gems there are, and add that number to the loop. 
Click or tap Run My Code.


• Try several different solutions.

• Celebrate with Byte!


4. Looping All the Sides:

• Have learners experiment with ways to collect all the gems, noticing which 

commands repeat.

• To add a for loop, either use the code suggestions at the bottom of the editor 

or tap + at the top of the screen.

• Gather ideas from the class, and write the code in Swift Playgrounds to 

complete the puzzle. Click or tap Run My Code.

• Try several different ideas.

• Celebrate with Byte!


  
Learn to Code 1 

Facilitator materials: 
• iPad or Mac

• Swift Playgrounds app

• Learn to Code 1 playground

• Projector or display


Learner materials: 
• Using Loops and Looping 

All the Sides worksheets

• Pencils

• Extra paper (optional)


Download the Learn to 
Code worksheets


Lesson 1: Repeating Petals

https://education-static.apple.com/code-early-learners/3.1-loops-usinglooping.pdf
https://education-static.apple.com/code-early-learners/3.1-loops-usinglooping.pdf


 25

LoopsLesson 2: Obstacle Course

Explore 
Objective: Explore why loops 
always need a specific end point.


Discussion: Ask learners to imagine 
a Ferris wheel or another ride they’re 
familiar with. What would happen if 
the operator didn’t press the button 
to stop the ride after five rounds? 
Have learners come up with other 
examples of what would happen if a 
loop isn’t stopped.


Takeaway: Help learners understand 
that if they don’t put a stop on a 
loop, it will repeat infinitely.


Discover 
Objective: Learners will discover how loops work by looping through an obstacle 
course that they design.


Materials: 
• Space to do physical activity

• Obstacle course props

• Die


Directions: 
1. Create a short obstacle course either in your classroom or outside.

2. Roll a die, and have learners repeat the course as many times as the die says.


Alternative: 
Learners come up with a series of moves — for example, touch your toes, jump, kick 
out one leg. Roll a die, and learners repeat the series of moves the number of times 
on the die.



 26

Loops

Facilitator materials: 
• Painter’s tape


Learner materials:  
• Role cards

• Command cards: 
moveForward(), 
turnLeft(), turnRight(), 
collectGem(), and Loop


• Gems

• Byte

• Arrow


Download the materials


Download the 
alternative activity

Play 
Objective: Learners will be able to create a puzzle that has a repeating pattern, 
then solve the puzzle as a group.


Preparation: Learners will be working in groups of three. Use painter’s tape to 
create a four-by-four grid on the floor for each group. 

Directions: 
1. Distribute the materials, and divide learners into groups of three.

2. Read through each role, and assign each person in the group a role for the 

first game.

3. Have learners play the game, starting with the designer role.

4. Play three times, each time rotating the role cards.


Roles: 
• Designer: With the help of your peers, place three gems in a repeating pattern 

on the grid. Place the starting arrow on the grid.

• Programmer: With your peers’ help, place the command cards on or next to 

the grid to direct Byte to the gems and collect them. Use the Loop cards to tell 
the tester how many times to loop through the commands.


• Tester: Starting with Byte on the arrow, follow the command cards to move 
Byte around the grid. If you collect all the gems, celebrate! If you don’t, work 
as a team to fix the code.


Alternative:

If learners are working with you individually or learning at home, they can play 
this game on their own using the downloadable alternative Keynote activity.

Loop!Loop

Lesson 2: Obstacle Course

https://education-static.apple.com/code-early-learners/3.2-loops-floorpuzzle.pdf
https://education-static.apple.com/code-early-learners/3.2-loops-play.key
https://education-static.apple.com/code-early-learners/3.2-loops-play.key


 27

LoopsLesson 3: Drumming Patterns

Explore 
Objective: Explore repeating 
patterns in music.


Discussion: Have learners share 
about instruments they play or 
songs they’ve sung. Ask if they 
ever repeat a beat or chorus when 
playing or singing. Can they think 
of other parts of a song or music 
that repeat?


Takeaway: Reinforce the idea that 
loops consist of two parts:

• The commands

• The number of times to repeat


Discover 
Objective: Learners will be able to repeat a drum pattern, making a connection 
between looping code and a real-life physical example.


Materials: 
• Something to drum on, such as the floor, thighs, or books

• Space to sit in a circle


Directions: 
1. Have learners sit in a circle.

2. Tell learners to repeat the drumbeat that you create, as many times as the number 

of fingers you hold up. For example, if you hold up four fingers, learners should 
repeat the drumbeat four times and then stop.


3. Take turns going around the circle or break into small groups so that each learner 
gets a chance to be the lead drummer.


Extension: 
Have learners make drums.




 28

Loops

Play 
Objective: Learners will call several different commands inside a loop and 
determine how many times the loop should be called.


Directions: 
1. Project the Learn to Code 1 playground on a screen. Navigate to the third page, 

To the Edge and Back, of the “Loops” chapter.

2. To the Edge and Back:


• Review the commands moveForward(), turnLeft(), turnRight(), 
collectGem(), and toggleSwitch(). 

• Have learners experiment with ways to direct Byte from the start arrow to each 
closed switch and toggle it.


• To add a for loop, either use the code suggestions at the bottom of the editor 
or tap + at the top of the screen.


• Gather ideas from the class, and write the code in the Swift Playgrounds app to 
complete the puzzle. Click or tap Run My Code.


• Try several different ideas.

• Celebrate with Byte!


Lesson 3: Drumming Patterns

  
Learn to Code 1 

Facilitator materials: 
• iPad or Mac

• Swift Playgrounds app

• Learn to Code 1 playground

• Projector or display


Learner materials: 
• To the Edge and 

Back worksheet

• Pencils

• iPad devices (optional)

• Extra paper (optional)


Download the Learn to 
Code worksheet

https://education-static.apple.com/code-early-learners/3.3-loops-toedgeback.pdf
https://education-static.apple.com/code-early-learners/3.3-loops-toedgeback.pdf


 29

Variables 

Overview 
Lesson 1: Sink or Float

• Explore: Discussion about updating a variable

• Discover: Sink or Float activity

• Play: Keeping Track and Sample Game


Lesson 2: Word Game 
• Explore: Discussion about types of answers to questions

• Discover: Word Game activity

• Play: Floor puzzle game


Lesson 3: All About Me 
• Explore: Discussion about answering questions with lists

• Discover: All About Me activity

• Play: Using a Loop


Learners Will Be Able To 
• Associate a variable name with a given value

• Change the value assigned to a variable

• Understand the different Swift types you can assign to a variable, 

including true/false (Booleans), numbers (Ints), words (Strings), colours 
(color literals), and images (image literals)


• Test and debug instructions and code


Vocabulary 
• Variable: A named container that stores a value and can be changed

• Data: Information

• Boolean: A type that has a value of either true or false

 



 30

VariablesLesson 1: Sink or Float

Explore 
Objective: Explore the concept of variables by counting 
objects and updating the variable number.


Facilitator materials: 
• Whiteboard

• Marker

• Eraser

• Container

• Five pencils (or any five of the same object)


Directions: 
1. Begin by writing a variable statement on the whiteboard 

to keep track of your objects.

• Example: var numberOfPencils = 0 

2. Hold up an empty container and tell learners that the 
container represents your variable, numberOfPencils.


3. Add one pencil to the container, and ask learners what 
the variable count is now. When they answer correctly, 
erase the 0 and write 1.


4. Continue until you’ve added all the pencils and your 
code reads: var numberOfPencils = 5.


5. Then begin taking pencils out of the container, updating 
the variable as you remove them.


Takeaway: Help learners understand that variables store 
a bit of information. In this case, the information is a 
number and the number tells you how many pencils are in 
the container.

Discover 
Objective: Using found objects, learners will conduct 
experiments to determine if items sink or float, then they’ll 
record the data using images (image literals) and true/false 
values (Booleans).


Learner materials: 
• iPad devices

• Keynote app

• Sink or Float worksheet

• Bucket of water

• Several objects to test


Directions: 
1. Break learners into small groups.

2. Have them collect various items to test.

3. For each item, ask learners to:


• Take a picture of the item and add it to the worksheet.

• Test the item in the water.

• Record results on the worksheet by circling either true 

or false.


Download the Sink or Float worksheet

https://education-static.apple.com/code-early-learners/4.1-variables-sinkfloat.key


 31

Variables

Play 
Objective: Learners will be able to create and update variables in two different 
coding contexts.


Directions: 
1. Project the Learn to Code 2 playground on a screen. Navigate to the 

“Variables” chapter.

2. Introduction:


• Read through the pages as a class, stopping for questions if needed.

3. Keeping Track:


• Have learners experiment with ways to direct Hopper from the start arrow to 
the gem and collect it. They record the commands on the worksheet or on a 
separate piece of paper.


• Gather ideas from the class, and write the code in the Swift Playgrounds app 
to complete the puzzle. Click or tap Run My Code.


• Try several different ideas.

• Celebrate with Hopper!


4. Leave Learn to Code 2 and move on to the last page of the Rock, Paper, 
Scissors playground, called Sample Game. (There’s no learner worksheet for this 
playground page.)


5. Sample Game:

• Click or tap Run My Code to play the game before changing anything.

• Decide as a group which parts of the game you want to customize. Some fun 

things you can change include game.roundsToWin, 
game.challenger.emoji, game.addOpponent, and game.roundPrize.


• Play the game several times, changing something different each time.


Extension: Many variables are established in the Game.swift file. If learners are 
curious why some variables don’t have var in front of them, open the Game.swift 
file to show them where the game properties were created.

Facilitator materials: 
• iPad or Mac

• Swift Playgrounds app

• Learn to Code 2 playground

• Rock, Paper, Scissors playground

• Projector or display


Learner materials: 
• Keeping Track worksheet

• Pencils

• Extra paper (optional)


Download the Learn to 
Code worksheet

Lesson 1: Sink or Float

Rock, Paper, 
Scissors

Learn to Code 2

https://education-static.apple.com/code-early-learners/4.1-variables-keepingtrack.pdf
https://education-static.apple.com/code-early-learners/4.1-variables-keepingtrack.pdf


 32

VariablesLesson 2: Word Game

Explore 
Objective: Explore various answer types in the real world 
and relate them to various Swift types, including yes/no or 
true/false (Booleans), numbers (Ints), words (Strings), 
colours (color literals), and images (image literals).


Facilitator materials: 
• Whiteboard

• Markers


Discussion: Come up with some questions as a class 
that require different types of answers, and write them on 
the board.


Examples:  
• What colour are your eyes? —> colour

• Do you have a pet? —> yes/no 

• Do you have siblings? —> yes/no

• How old are you? —> number

• What’s your name? —> word


Takeaway: Explain that variables also have different types, 
including numbers, words, colours, pictures, and yes or no 
answers. Depending on how you create a variable, you’ll 
have to maintain the same type, even if you update the 
variable to something new. For example, var myAge = 8 
can change to 9, but it can’t change to "nine".


Discover 
Objective: Learners will be able to complete a word game by 
filling in the correct answer type.


Learner materials: 
• Word Game worksheets

• Pencils

• Coloured pencils


Directions: 
Have learners work through one or more word games in small 
groups. Ideally each group should have at least one reader or 
supporting person. If all learners are nonreaders, do a few 
games together as a whole group.


Extension: If learners are able to, have them create a word 
game for a partner to fill out. Encourage them to use numbers, 
words, colours, images, and yes or no answers for the blanks.


Download the Word Game worksheets

https://education-static.apple.com/code-early-learners/4.2-variables-wordgames.pdf


 33

Variables

Play 
Objective: Learners will be able to guide Byte to collect several gems, add 
each gem to a container, and update a variable.


Preparation: Learners will be working in groups of three. Use painter’s tape to 
create a four-by-four grid on the floor for each group. 

Directions: 
1. Distribute the materials, and divide learners into groups of three.

2. Read through each role, and assign each person in the group a role for the 

first game.

3. Have learners play the game, starting with the designer role.

4. Play three times, each time rotating the role cards.


Roles: 
• Designer: Place multiple gems and the starting arrow on the grid.

• Programmer: With the help of your peers, place the command cards on or 

next to the grid to direct Byte to the gems and collect them.

• Tester: Starting with Byte on the arrow, follow the commands to move Byte 

around the grid, adding the gems to the container as you collect them. If you 
collect all the gems, update the variable numberOfGems on the container 
and celebrate! If you don’t collect them all, work as a team to fix the code.


Alternative:

If learners are working with you individually or learning at home, they can play 
this game on their own using the downloadable alternative Keynote activity.


Facilitator materials: 
• Painter’s tape


Learner materials: 
• Role cards

• Command cards: 
moveForward(), turnLeft(), 
turnRight(), collectGem(), 
and Loop


• Gems

• Byte

• Arrow

• Container labeled:

var numberOfGems = _____ 

• Pen


Download the materials


Download the 
alternative activity


Lesson 2: Word Game

Loop!Loop

https://education-static.apple.com/code-early-learners/4.2-variables-floorpuzzle.pdf
https://education-static.apple.com/code-early-learners/4.2-variables-play.key
https://education-static.apple.com/code-early-learners/4.2-variables-play.key


 34

VariablesLesson 3: All About Me

Explore 
Objective: Explore how to use lists — or arrays — when 
creating variables.


Discussion: What would happen if a worksheet asked 
learners for their sibling’s name and they have more than 
one? Collect ideas from the class. If they suggest making a 
list, tell them that’s what coders do! When a variable has 
more than one answer, learners should create a list.

Have learners come up with questions that could have 
multiple answers.


Examples: 
• Friends’ names —> Rose, Sam, Joy


• Learners’ ages —> 7, 8, 7, 8, 7, 8, 9, 7, 8, 9, 8


• Favourite colours —>   ,   ,   ,   ,   


• Favourite animals —>   ,   ,   ,  


Takeaway: Lists that learners create in code are just like 
lists in a sentence.

Discover 
Objective: Learners will be able to fill in variables to describe 
things about themselves and a partner. Learners might have 
the opportunity to use an array as a variable type.


Learner materials: 
• All About Me and All About You worksheets

• Pencils

• Coloured pencils


Directions:  
1. Have learners complete the All About Me worksheet.


• If learners have more than one sibling or pet, have them 
make a list of items separated by commas.


2. Pair learners up to complete the All About You worksheet.


Alternative: Learners can use their iPad and Keynote to 
complete the worksheet, taking photos for the picture answers 
and colouring the color literals using the formatting options.


Download the All About worksheets

https://education-static.apple.com/code-early-learners/4.3-variables-allabout.key


 35

Variables

Play 
Objective: Learners will be able to identify a variable in code and explore ways 
they can use arrays with loops.


Directions: 
1. Project the Code Machine playground on a screen.

2. Introduction:


• Read through the pages as a class, stopping for questions if needed.

• Optional: Play through the first two pages, Exploring the Machine and 

Combining with Colors.

3. Using a Loop:


• On this page, learners will combine their knowledge of loops with variables.

• See if learners can identify the variable in the code that uses an array.

• Click or tap Run My Code to see what the machine creates.

• Move on to the second step in the instructions and update the code to 

include a second variable, items, and a nested loop. Click or tap Run My 
Code again to see what the machine creates.


• Note: Try this page before doing the activity with learners.


 
Code Machine 

Facilitator materials: 
• iPad or Mac

• Swift Playgrounds app

• Code Machine playground

• Projector or display

Lesson 3: All About Me



App Design



 37

Explore 
Objective: Explore familiar apps on various devices.


Directions: Start a discussion about apps that learners use 
on iPad at home or school. Then talk about apps that they or 
their parents or guardians use on devices at home.


Takeaway: Reinforce the idea that apps aren’t just on phones 
but also on watches, tablets, computers, and even TV.


Extension: Go deeper into a few examples of apps, asking 
learners who the app is designed for, what it does, and why 
they think it was made.


Example:

• App: Swift Playgrounds

• Who it’s for: People who want to learn about Swift

• What it does: Helps people learn how to code through 

puzzles and lessons

• Why it was made: To teach people with little or no 

programming knowledge how to code

Discover 
Objective: Prepare learners to design their own apps by 
analyzing a familiar app.


Learner materials: 
• iPad devices

• What’s an App? worksheet

• Pencils

• Coloured pens or pencils


Directions: 
1. Break learners into small groups, or have them work 

individually.

2. Ask learners to choose an iPad app.

3. Have them use the What’s an App? worksheet to guide 

their app exploration.

4. Invite learners to share their findings about the app, either 

with the whole group or with partners.


Facilitator tip: The younger your learners are, the more help 
they’ll need to complete this worksheet. For a K–1 group, 
consider doing two or three apps as a whole group.


Download the What’s an App? worksheet

App Design

https://education-static.apple.com/code-early-learners/5-appdesign-whatsanapp.pdf


 38

Play 
Objective: Learners design their own apps!


Learner materials: 
• My App Design worksheet

• Device templates

• Extra paper

• Pencils

• Coloured pens or pencils


Directions: 
1. Break learners into small groups, or have them 

work individually.

2. Walk learners through the My App Design 

worksheet to guide their initial process of designing 
an app.


3. Have learners prototype the pages of their apps 
using extra paper or the device templates.


4. Instruct learners to create a final version of their 
app prototypes using the device templates.


5. Invite each learner or group of learners to present 
their ideas to the whole group.


Download the My App Design worksheet


Download the device templates

App Design

https://education-static.apple.com/code-early-learners/5-appdesign-start.pdf
https://education-static.apple.com/code-early-learners/5-appdesign-template.pdf


Facilitator Resources 



 40

Glossary 

• Boolean: A type that has a value of either true or false


• Bug: An error in code


• Command: Code that tells an application to perform a 
specific action


• Data: Information 

• Debug: To find and fix errors in code 

• Function: A named set of commands that can be run 
whenever needed 

• Loop: A block of code that repeats a certain number of times


• Modify: To change 

• Sequence: The order in which things happen 

• Step: One action in a larger process 

• Toggle: To switch on or off 

• Variable: A named container that stores a value and can 
be changed 

Facilitator Resources



 41

Example Answers 

These next few pages 
provide one possible solution 
for each Swift Playgrounds 
puzzle — but the puzzles 
can be solved in more  
than one way. Encourage 
learners to try different ways 
they can direct Byte or 
other characters.


Celebrate all types of coding 
and goals that learners might 
have. Some learners might 
want to explore all the 
puzzle space in addition to 
collecting the gems, while 
others might want to spin as 
many times as possible on 
the way to collecting gems. 
Don’t forget — coding 
should be fun!

Commands chapter 
Issuing Commands

Commands chapter 
Adding a New 
Command

Functions chapter 
Composing a New 
Behavior

Functions chapter  
Creating a New 
Function

moveForward() 
moveForward() 
moveForward() 
collectGem() 

moveForward() 
moveForward() 
turnLeft() 
moveForward() 
moveForward() 
collectGem() 

moveForward() 
moveForward() 
moveForward() 
turnLeft() 
turnLeft() 
turnLeft() 
moveForward() 
moveForward() 
moveForward() 
collectGem()

func turnRight() { 
  turnLeft() 
  turnLeft() 
  turnLeft() 
} 

moveForward() 
turnLeft() 
moveForward() 
turnRight() 
moveForward() 
turnRight() 
moveForward() 
turnRight() 
moveForward() 
turnLeft() 
moveForward() 
toggleSwitch()

Learn To Code 1

Facilitator Resources



 42

Functions chapter 
Collect, Toggle, Repeat

Loops chapter 
Using Loops

Loops chapter 
Looping All the Sides

Loops chapter 
To the Edge and Back

Variables chapter 
Keeping Track

func collectToggle() { 
  moveForward() 
  collectGem() 
  moveForward() 
  toggleSwitch() 
  moveForward() 
} 

collectToggle() 
turnLeft() 
collectToggle() 
moveForward() 
turnLeft() 
collectToggle() 
turnLeft() 
collectToggle() 

for i in 1 ... 5 { 
  moveForward() 
  moveForward() 
  collectGem() 
  moveForward() 
} 

for i in 1 ... 4 { 
  moveForward() 
  collectGem() 
  moveForward() 
  moveForward() 
  moveForward() 
  turnRight() 
}

for i in 1 ... 4 { 
  moveForward() 
  moveForward() 
  toggleSwitch() 
  turnLeft() 
  turnLeft() 
  moveForward() 
  moveForward() 
  turnLeft()  
} 

var gemCounter = 0 
moveForward() 
moveForward() 
collectGem() 
gemCounter += 1

Learn To Code 1 Learn To Code 2

Facilitator Resources



 43

Sample Game Using a Loop

There’s no solution 
example for this page 
because the game is 
entirely customizable — 
you can play it any way 
you like!


var colors = [Light.red, Light.green, 
Light.blue] 

var items = [Item.metal, Item.stone, 
Item.cloth, Item.dirt, Item.DNA, Item.spring, 
Item.wire, Item.egg, Item.tree, Item.gear, 
Item.seed, Item.crystal, Item.mushroom, 
Item.unidentifiedLifeForm] 

for item in items { 
  setItemA(item) 
  setItemB(.dirt) 
  switchLightOn(.green) 
  forgeItems() 
}

Rock, Paper, Scissors Code Machine

Facilitator Resources



© 2024 Apple Inc. All rights reserved. Apple, the Apple logo, Apple Watch, iPad, iPhone, Keynote, Mac, Pages, Swift, the Swift logo, and Swift Playgrounds are 
trademarks of Apple Inc., registered in the U.S. and other countries. App Store and Everyone Can Code are service marks of Apple Inc., registered in the U.S. 

and other countries. Other product and company names mentioned herein may be trademarks of their respective companies. September 2024


	Table of Contents
	Introduction
	Instructional Design
	Scope and Sequence
	Learner Portfolios (Optional)
	Getting Started with Swift Playgrounds on iPad or Mac
	Facilitator Tips

	Commands
	Lesson 1: Daily Routines
	Lesson 2: Story Order
	Lesson 3: Dance Moves

	Functions
	Lesson 1: Paper Gem
	Lesson 2: Songfest
	Lesson 3: My Calming Function

	Loops
	Lesson 1: Repeating Petals
	Lesson 2: Obstacle Course
	Lesson 3: Drumming Patterns

	Variables
	Lesson 1: Sink or Float
	Lesson 2: Word Game
	Lesson 3: All About Me

	App Design
	Facilitator Resources

