
Swift Playgrounds Kit

Welcome to the Swift Coding Club!
Learning to code teaches you how to solve problems and work together in creative
ways. And it helps you build apps that bring your ideas to life.

Swift Coding Clubs are a fun way to learn to code and design apps. Activities  
built around Swift, Apple’s coding language, help you collaborate as you learn  
to code, prototype apps, and think about how code can make a difference in  
the world around you.

You don’t have to be a teacher or a coding expert to run a Swift Coding Club. The
materials are self-paced, so you can even learn alongside your club members. And  
you can all celebrate your club’s ideas and designs with an app showcase event for  
your community.

This kit is arranged in three sections:

Get Started Learn & Design Celebrate

Swift Coding Clubs

Swift Playgrounds | Ages 11+

Use Swift code to learn coding
fundamentals with Swift Playgrounds
on iPad.

Swift Playgrounds Kit: Welcome

Block-Based Coding | Ages 8–11

Learn coding basics using visual apps
on iPad.

Xcode | Ages 14+

Learn to develop apps in Xcode  
on Mac.Everything you  

need to launch a  
Swift Coding Club.

Tips and activities  
for designing  
club sessions.

Helpful resources  
to plan and host an
app showcase in
your community.

 2

Get Started
1. Download club materials.
Use AirDrop to share these two guides with club members in your first club meeting.
They’re also included as part of this document.

Coding Activities
Learn coding concepts with these fun,
collaborative activities and solve puzzles  
with the Swift Playgrounds app on iPad.

Download Swift Playgrounds Coding Activities >

App Design Journal
Explore the app design process with this Keynote
journal. Brainstorm, plan, prototype, and evaluate
your club’s app ideas.

Download Swift Playgrounds App Design Journal >

Swift Playgrounds Kit: Get Started 3

http://education-static.apple.com/coding-club-kit/playgrounds-coding.pdf
http://education-static.apple.com/coding-club-kit/playgrounds-appjournal.key
http://education-static.apple.com/coding-club-kit/playgrounds-appjournal.key
http://education-static.apple.com/coding-club-kit/playgrounds-coding.pdf

3. Make a plan.
Here are some things to consider:

• Who are your club members? What are their
interests? Do they have experience with coding
or are they brand-new?

• How often will your club meet? If you’re planning
a summer camp, how many hours of coding
activities will you have?

• What technology is available for the club?

• What are the goals of your club?

Swift Playgrounds Kit: Get Started 4

2. Check your tech.
Before your first meeting, be sure you have the following:

• iPad. iPad mini 2 or later, iPad Air or later, or iPad Pro
running iOS 11 or later. It’s best if each person has their
own device, but they can also share and code together.

• Swift Playgrounds app. Download Swift Playgrounds >

• Learn to Code 1 and 2 playgrounds. Download these  
playgrounds from within the Swift Playgrounds app.

• Keynote. You’ll use the Keynote app on iPad for your
app prototypes.

• Swift Coding Club materials.

https://itunes.apple.com/us/app/swift-playgrounds/id908519492?mt=8
https://itunes.apple.com/us/app/swift-playgrounds/id908519492?mt=8

Swift Coding Club poster

Swift Coding Club sticker

4. Spread the word.
Let people know about your Swift Coding Club. Here are some ideas and
resources to attract new members to your club:

• Announce your club. Use email, social media, the web, flyers, or word of
mouth to let your community know about your club.

• Host an informational meeting. Ask potential club members about their
interests and what types of apps they’d want to create. Talk about ideas for
holding an app design showcase and how members can get involved. You
can also share a short video about the club online.

These items can help you promote and personalize your Swift Coding Club:

• Posters. Download this free template, then personalize it to create your own
poster. Print and display it, or make a digital poster to share online. Be sure  
to include details for when and where the club will meet and how to join.

• Stickers and T-shirts. Use these Swift Coding Club stickers to help promote
your club. T-shirts are a great way to recognize members who participate in
app showcase events. Download the Swift Coding Club T-shirt template to
make shirts for your members.

Swift Coding Club T-shirt

Swift Playgrounds Kit: Get Started 5

http://education-static.apple.com/coding-club-kit/posters.zip
http://education-static.apple.com/coding-club-kit/stickers.zip
http://education-static.apple.com/coding-club-kit/shirts.zip
http://education-static.apple.com/coding-club-kit/posters.zip
http://education-static.apple.com/coding-club-kit/stickers.zip
http://education-static.apple.com/coding-club-kit/shirts.zip

Learn & Design
The club materials are designed for you to interweave coding and app design
activities. You can also add sessions that support your members’ interests.
Below is a sample schedule for 30 one-hour club sessions.

Consider adding sessions to expand on app design and coding activities, like building a drone obstacle course or creating a  
robot rescue mission challenge. To prompt app design brainstorming, you might even want to add guest speakers or field trips.

Swift Playgrounds Kit: Learn & Design 6

Sessions
1–5

Sessions
6–10

Sessions
11–15

Sessions
16–20

Sessions
21–25

Sessions
26–30

• Setup

• Coding
Activities 
1 & 2

• App Design  
Journal:
Brainstorm

• Coding
Activities  
3 & 4

• App Design
Journal: Plan

• Coding  
Activity 5

• App Design
Journal:
Prototype

• Coding  
Activity 6

• App Design
Journal:
Prototype

• Coding  
Activity 7

• App Design
Journal:
Evaluate  
and Reiterate

• App Design
Journal:  
App Pitch

• App Design
Showcase

Tips for Club Leaders

Swift Playgrounds Kit: Learn & Design 7

Build a leadership team. Having a group of members who help
with leading the club can make it much easier and more fun. Which

club members have leadership potential? Think about adding
officers to your club for events, coding, app design, and more.

Learn together. Club leaders  
don’t have to know everything. Help

your members work on their own
research and problem-solving skills  
and encourage them to help others.

Share ideas. Some members will be
interested in making games. Others
might want to create apps to help
people, learn Swift, or control robots.
Think about ways for members to work

together on projects they care about.

Mix it up. Sometimes members
who are more advanced can  
leave others behind. See if those
members can partner up with
beginners for pair programming.
Teaching someone else is a  
great way to learn!

Show off. An app showcase event  
is a great way to promote your club,

app ideas, and coding skills to friends,
families, teachers, and the community.

It might even help you recruit more
members. See page 13 to get tips for

holding your own app showcase.

Take It Further: Each coding concept
has two Take It Further activities. The
first activity deepens understanding  
of the coding concept and fosters
communication and teamwork.
Members use iPad to apply their
understanding in a creative project.

The second optional activity  
challenges members to apply the
concept in a playground from the
Challenges, Starting Points, and
Subscriptions sections of Swift
Playgrounds. Some activities require
specific connected devices.

Coding concepts: In each activity,
club members will learn about a
fundamental coding concept and
explore it in an everyday context.
They’ll then apply the coding concept
to solve puzzles in Swift Playgrounds.

Need more information  
or want to go deeper?

Download Swift
Playgrounds: Learn to
Code 1 & 2 Teacher
Guide >

Coding activities: Built around  
Swift Playgrounds, these collaborative
activities introduce fundamental
coding concepts and skills.

Swift Playgrounds Kit: Learn & Design

Swift Playgrounds Coding Activities

 8

https://itunes.apple.com/us/book/swift-playgrounds-learn-to-code-1-2/id1118578018?mt=11
https://itunes.apple.com/us/book/swift-playgrounds-learn-to-code-1-2/id1118578018?mt=11
https://itunes.apple.com/us/book/swift-playgrounds-learn-to-code-1-2/id1118578018?mt=11
https://itunes.apple.com/us/book/swift-playgrounds-learn-to-code-1-2/id1118578018?mt=11
https://itunes.apple.com/us/book/swift-playgrounds-learn-to-code-1-2/id1118578018?mt=11
https://itunes.apple.com/us/book/swift-playgrounds-learn-to-code-1-2/id1118578018?mt=11
https://itunes.apple.com/us/book/swift-playgrounds-learn-to-code-1-2/id1118578018?mt=11
https://itunes.apple.com/us/book/swift-playgrounds-learn-to-code-1-2/id1118578018?mt=11

Solve in multiple ways. Each puzzle has many
solutions. If members finish early, encourage
them to think of different ways to solve the
puzzles. Thinking flexibly and comparing
different solutions can help them improve
their critical-thinking skills.

Break down the puzzles. The
puzzles get tricky. Club members

can divide a puzzle into parts to help
them think through all the steps to

solve it. They can use Pages or
Notes to plan and write out their
steps before entering the code.

Set up a help desk. Maintain a
space where club experts can
provide support to their peers.

Swift Playgrounds Kit: Learn & Design

Tips for Learning with Swift Playgrounds

 9

Explore the puzzles first. Encourage club  
members to zoom and rotate Byte’s world in

the live view so they can take a good look
at what they need to accomplish. They
can also view it full screen by touching

and holding the partition
between the two windows,
then dragging to the left.

Pair coding. Have club members try
working together on one iPad. They can
brainstorm on how to solve the puzzles
and take turns writing the code.

Use accessibility features. Swift Playgrounds
works well with the built-in assistive features  

in iOS so that everyone can learn to code. For
example, coders can invert the colors, enable
grayscale, and zoom to adjust visibility.

Choose a character. Personalize your
experience by tapping the character to
choose a different one.

Snippets Library.  
To minimize typing, tap
in the toolbar to access  
the Snippets Library and
quickly drag commonly
used pieces of code.

 10

Explore Swift Playgrounds

Hint. This feature provides
suggestions to help learners. It also
reveals a puzzle’s solution eventually,
though coders can’t simply cut and
paste the solution. To move on, they
still have to complete the steps and
write the code themselves.

Control the speed. Speed up or
slow down the code.

Highlight code as it runs. Use  
Step Through My Code to highlight
each line of code as it runs to better
understand what the code is doing.

Swift Playgrounds Kit: Learn & Design 11

App Design Journal

Need Keynote tips?

Download Keynote
for iPad Starter  
Guide iOS 11 >

Swift Playgrounds Kit: Learn & Design 12

The journal walks coders through the
process of evaluating their designs  
and iterating on their prototypes— 
just like professional app designers.

Members create a three-minute  
app pitch presentation or video  
and celebrate their work in an app
design showcase.

Club members work in small teams
to brainstorm and plan the app
solution, then create a working
prototype of the app in Keynote.

Coders use this Keynote journal  
to learn about app features and
design an app to solve a  
community problem.

https://itunes.apple.com/us/book/keynote-for-ipad-starter-guide-ios-11/id1319011418?mt=11
https://itunes.apple.com/us/book/keynote-for-ipad-starter-guide-ios-11/id1319011418?mt=11
https://itunes.apple.com/us/book/keynote-for-ipad-starter-guide-ios-11/id1319011418?mt=11
https://itunes.apple.com/us/book/keynote-for-ipad-starter-guide-ios-11/id1319011418?mt=11
https://itunes.apple.com/us/book/keynote-for-ipad-starter-guide-ios-11/id1319011418?mt=11
https://itunes.apple.com/us/book/keynote-for-ipad-starter-guide-ios-11/id1319011418?mt=11

2. Design awards. Friendly competition can be a  
great motivator. Inspire club members by offering
awards that recognize specific strengths in app  
design. Consider awards for:

• Best Engineering

• Best Innovation

• Best Design

• Best Pitch

You could also encourage audience participation  
with a People’s Choice award.

1. Plan the big event. Set a date for the showcase
and invite students, teachers, parents, and community
members to attend.

Allow time for each team to present their app pitch
and to hold a short Q&A session. If you have a large
group, you can split the club into two rounds where
members can watch each other’s pitches.

Consider finishing the event with a fun slideshow of
photos taken throughout club sessions.

You can download and modify this
certificate for different awards.

Celebrate
App design showcase
The app design process and the showcase are powerful opportunities to involve the broader community and explore the
potential of apps for solving contemporary problems. The showcase is also the perfect way to show off the talents of
your club members!

Swift Playgrounds Kit: Celebrate 13

http://education-static.apple.com/coding-club-kit/playgrounds-certificate.pdf
http://education-static.apple.com/coding-club-kit/playgrounds-certificate.pdf

3. Recruit judges and mentors. Judges and mentors
can be teachers or staff, students with expertise in
coding, experts from the developer or design industry,
members of the school board, local community leaders,
or individuals who would benefit from the app idea.

Judges don’t have to wait until the showcase to meet the
club. Consider inviting them as guest speakers to share
their expertise when learners are in the brainstorming or
planning phase of their app design.

4. Pick a winner. Judges can use the rubric on the next
page to help them evaluate the app pitches and provide
feedback. You could also share the rubric with coders
before the showcase as part of the evaluation phase of
the app design process.

5. Share and inspire. You may want to record the
showcase presentations. Share them with the broader
community and create a highlight reel to inspire future
club members.

Swift Playgrounds Kit: Celebrate 14

http://www.apple.com
http://www.apple.com

Download >

Evaluation Rubric

Novice (1 point) Intermediate (2 points) Proficient (3 points) Mastered (4 points) Points

Pitch
Content

The pitch shares key
information about the  
app, such as its purpose  
and target audience.

The pitch clearly explains  
how the app was designed  
and how it improves on  
existing apps that have a
similar purpose and audience.

The pitch explains how the  
app was designed to meet a
market demand and how its
solution is unique.

The pitch provides evidence  
of market demand and explains
how the app design process
ensures app success with  
key stakeholders.

Pitch
Delivery

The team explains key  
points during their pitch.

The team delivers their  
pitch with confidence  
and enthusiasm.

The team delivers an engaging
pitch using a range of audience
engagement techniques.

The pitch is well articulated,
creative, memorable, and 
fluid across the team.

User
Interface

The UI design complements the
purpose of the app and has
thematically consistent screens.

The UI design applies familiar
iOS interface elements, icons,
and text styles to achieve
clarity and function. The
prototype has interactive
elements that demonstrate  
the app’s behavior.

The UI is elegant, concise,  
and pleasing, with attention
given to color, layout, and
readability. It gives feedback  
to the user about their progress
through the app, or the options
available to them when they
perform an action.

The app design defers to  
its content as the most  
important element. The UI  
design empowers the user  
to directly interact with and
manipulate its content. It uses
animation to provide additional
feedback for interactions.

User
Experience

The prototype expresses a
clear intent for the app and  
how users can interact with  
it to accomplish a goal.

The prototype uses consistent
and standard navigation
techniques to provide the  
user with a clear and intuitive
path through its content.

The prototype enables users  
to view and interact with its
content differently depending
on their needs. The prototype
addresses accessibility and
includes features to protect
user privacy or online safety.

The prototype innovates on  
best practices of similar apps  
and caters to the needs of both
new and experienced users. It
exhibits a style and personality
that set it apart from its peers.

Coding
Concepts

The team describes how their
app design would relate to its
code, such as the kind of data
it stores or how it reacts to
different user inputs.

The team explains how  
basic coding concepts like  
data types, conditional logic,
and touch events relate to  
the design of their app.

The team describes specific
coding tasks that would be
necessary to implement their
app, as well as how that  
code powers its screens  
and/or interactions.

The team explains the algorithms
at the heart of their app, and
describes them conversationally
or in pseudocode. They describe
the app’s functional parts and its
data, and how they’re structured
and interrelated.

Comments:

Total
score

http://education-static.apple.com/coding-club-kit/playgrounds-rubric.pdf
http://education-static.apple.com/coding-club-kit/playgrounds-rubric.pdf

Signature

Awarded to

For

Certificate of Achievement

Date

Swift Coding Club
Swift Playgrounds

Take It Further
Swift Coding Club is just the beginning of your coding journey. The Everyone Can Code curriculum provides fun,
supportive resources to take coders from learning the basics on iPad to building real apps on Mac.

And you don’t have to stop at club activities. Comprehensive Teacher Guides also enable teachers to bring coding  
into the classroom, with step-by-step, curriculum-aligned lessons for students from kindergarten to college.

See all the Everyone Can Code resources >

Learn more about the  
Get Started with Code 

curriculum >

Learn more about the  
Swift Playgrounds  

curriculum >

Learn more about the  
App Development with Swift  

curriculum >

Swift Playgrounds Kit: Take It Further 17

https://itunes.apple.com/WebObjects/MZStore.woa/wa/viewMultiRoom?fcId=1115454727&ls=1&app=itunes&at=11lvuV&ct=edu-www-ecc-room-coderesources&v0=www-us-education-everyone-can-code-coding-resources
https://www.apple.com/education/docs/App_Development_with_Swift_Curriculum_Guide.pdf
https://www.apple.com/education/docs/App_Development_with_Swift_Curriculum_Guide.pdf
https://www.apple.com/education/docs/App_Development_with_Swift_Curriculum_Guide.pdf
https://www.apple.com/education/docs/App_Development_with_Swift_Curriculum_Guide.pdf
https://www.apple.com/education/docs/App_Development_with_Swift_Curriculum_Guide.pdf
https://www.apple.com/education/docs/App_Development_with_Swift_Curriculum_Guide.pdf
https://www.apple.com/education/docs/Get_Started_with_Code_Curriculum_Guide.pdf
https://www.apple.com/education/docs/Get_Started_with_Code_Curriculum_Guide.pdf
https://www.apple.com/education/docs/Get_Started_with_Code_Curriculum_Guide.pdf
https://www.apple.com/education/docs/Get_Started_with_Code_Curriculum_Guide.pdf
https://www.apple.com/education/docs/Swift_Playgrounds_Curriculum_Guide.pdf
https://www.apple.com/education/docs/Swift_Playgrounds_Curriculum_Guide.pdf
https://www.apple.com/education/docs/Swift_Playgrounds_Curriculum_Guide.pdf
https://itunes.apple.com/WebObjects/MZStore.woa/wa/viewMultiRoom?fcId=1115454727&ls=1&app=itunes&at=11lvuV&ct=edu-www-ecc-room-coderesources&v0=www-us-education-everyone-can-code-coding-resources
https://www.apple.com/education/docs/Swift_Playgrounds_Curriculum_Guide.pdf
https://www.apple.com/education/docs/Swift_Playgrounds_Curriculum_Guide.pdf
https://www.apple.com/education/docs/Swift_Playgrounds_Curriculum_Guide.pdf
https://www.apple.com/education/docs/Get_Started_with_Code_Curriculum_Guide.pdf
https://www.apple.com/education/docs/Get_Started_with_Code_Curriculum_Guide.pdf
https://www.apple.com/education/docs/Get_Started_with_Code_Curriculum_Guide.pdf
https://www.apple.com/education/docs/Get_Started_with_Code_Curriculum_Guide.pdf

© 2018 Apple Inc. All rights reserved. Apple, the Apple logo, AirDrop, iPad, iPad Air, iPad mini, iPad Pro, Keynote, Mac, Pages, and Xcode are trademarks of Apple Inc., registered in the U.S. and other

countries. Swift and Swift Playgrounds are trademarks of Apple Inc. Other product and company names mentioned herein may be trademarks of their respective companies. November 2018

Swift Playgrounds  
Coding Activities

Welcome to the Swift Coding Club!
These coding activities cover fundamental coding
concepts to go along with the app design activities.
With these activities, you’ll not only build up your
coding skills, but you’ll start to understand how  
apps work. This will help you design better apps.

For each topic, you’ll learn about a specific coding
concept with a brief introduction activity, then you’ll
apply that coding concept to solve puzzles in  
Swift Playgrounds.

There are also “Take It Further” activities for each  
topic to help you learn more about that concept.  
These additional activities are optional and you can
choose to do none, one, or both activities. Note that
some of these activities require another device like  
a robot or drone. If you have these devices, they’re a
great way to apply what you’ve learned.

Have fun!

Topics

Think Like a Computer: 3 
Commands and Sequences

Think Efficiently: 5 
Functions and a Bit of Loops

Think Logically: 7 
Conditional Code

Think Again and Again: 9  
While Loops

Think the Same Idea: 11 
Algorithms

Think Like a NewsBot: 13 
Variables

Think Like an Architect: 15 
Types

 2

1 

2 

3

4

5

6

7

Think Like a Computer: Commands and Sequences 1

Commands

Introduction

Issuing Commands

Adding a New Command

Toggling Switches

Portal Practice

Finding and Fixing Bugs

Bug Squash Practice

The Shortest Route

Command: A specific action for the computer to perform.
Sequence: The order in which the commands are given.
Debugging: The process of identifying and fixing the error.

Introduction (15 minutes)
Pair up with a partner. One person is the director and the other is the doer. The director needs  
to come up with an idea for the doer to do. Examples might be to draw a smiley face on the
board or do five jumping jacks. Without telling the doer what the overall task is, the director
should only provide step-by-step directions. Did the doer complete the task as intended?

The director was telling the doer commands within a sequence, which is what you need to do
when you write code.

Watch this video to learn more about commands, and this one on debugging.

Now think about the instructions again, especially if the doer wasn’t able to complete the task  
as intended. Was there a missing step in the instructions? Or if you switched the order of a  
few steps, would it have been clearer? This process is called debugging. Programmers often
debug to fix and improve their code.

Practice (30 minutes)
Now use Swift Playgrounds Learn to Code 1 to complete the puzzles with green checkmarks
in the list at right.

Think about it: How did the commands you used in the app compare to the directions  
the director gave?

 3

http://education-static.apple.com/swift-playgrounds/01-commands.mp4
http://education-static.apple.com/swift-playgrounds/02-debugging.mp4
http://education-static.apple.com/swift-playgrounds/01-commands.mp4
http://education-static.apple.com/swift-playgrounds/02-debugging.mp4

Hide and seek (1 session)
1. Hide a small object in or near the room.

2. Stand in one spot and use the iPad camera to record
yourself giving directions for someone to find the object.
The directions should start from where you’re standing.

3. Now trade videos with another student. Watch their video
to try to find the hidden object. Did you find it?

Think about it: How could the instructions be improved?  
Do the instructions need debugging? If so, how?

Think Like a Computer: Commands and Sequences
Take It Further 1

Dash (1 session)
1. If you have Dash robots from Wonder Workshop available,

get the Dash lesson in Swift Playgrounds.

 
 

2. Use commands to guide Dash through the race day.

3. The path on Get to the Race can be a bit tricky. Compare
your code with other students’ code. If needed, review
each other’s code and debug together.

4. See how far you can get. You can always return to this
lesson once you’ve learned more coding concepts.

5. When ready, you can create your own story with Dash as
the main character.

Think about it: What sensors on Dash did you use to help  
tell your story? How did these sensors add to your story?

 4

Think Efficiently: Functions and a Bit of Loops 2

Functions

Introduction

Composing a New Behavior

Creating a New Function

Collect, Toggle, Repeat

Across the Board

Nesting Patterns

Slotted Stairways

Treasure Hunt

For Loops

Introduction

Using Loops

Looping All the Sides

To the Edge and Back

Loop Jumper

Branch Out

Gem Farm

Four Stash Sweep

Function: A collection of commands grouped together and given a name.
For loop: Runs a block of code over and over for a set number of times.

Introduction (5 minutes)
Think of some dance moves. Describe the moves to each other, or better yet, get others  
to perform them. How easy was it to describe?

In programming, it’s sometimes easier to combine existing commands to create a new
behavior. This process is called composition. When you name the new behavior so you  
can use it again in the future, you’ve created a function. When you tell a program to run a
function, you’re “calling” it. So if somebody said, “Do the Macarena,” they’re calling the
function “Macarena.”

Take a look at this video on functions and loops.

Practice (40 minutes)
Now use Swift Playgrounds Learn to Code 1 to complete the puzzles with green checkmarks
in the list at right.

Think about it: In a given puzzle, how many moves did the character make? And how many
commands did you write? When and why should you create functions and loops?

 5

http://education-static.apple.com/swift-playgrounds/03-functions-and-loops.mp4
http://education-static.apple.com/swift-playgrounds/03-functions-and-loops.mp4

Pattern maker (1 session)
1. Create a pattern using a drawing app like Art Set or Pages,

incorporating different shapes, objects, and colors. The
pattern can be as long as you’d like.

2. In the app, write your pattern 20 times with words—for
example, “red, yellow, blue; red, yellow, blue…” and so on.

3. Create a name for the part of the pattern that repeats  
(for example, red, yellow, blue = Primary Colors), then write
the pattern again in words using only the new name.

4. How much less work or fewer steps did it take to write  
the pattern?

5. How many times does Primary Colors repeat? Now  
describe your pattern in one step. You’ve written  
a for loop!

Think about it: How does this activity relate to coding?

Robot interview (1 session)
1. Get the Answers Starting Point in Swift Playgrounds.

 
 

2. On the Text page, “show” and “ask” are functions. Tap  
Run My Code and fill in your name, then tap Submit to see
what happens. Functions can have a result, which is what
you see in the live view.

3. On the Types page, explore different “show” and “ask”
functions.

4. Pair up with a club mate and write a series of different
“show” and “ask” functions for each other to complete.

5. Use the results from your functions to write a fictional story,
an interview article, or a short biography.

Think about it: What if you wrote your “show” and “ask”
functions in a different sequence? How would it affect your
story or interview?

Think Efficiently: Functions and a Bit of Loops
Take It Further 2

 6

Think Logically: Conditional Code 3

Conditional Code

Introduction

Checking for Switches

Using else if

Looping Conditional Code

Conditional Climb

Defining Smarter Functions

Boxed In

Decision Tree

Logical Operators

Introduction

Using the NOT Operator

Serial of NOT

Checking This AND That

Checking This OR That

Logical Labyrinth
Condition: Something you test that results in true or false.
Conditional code: A block of code that will run only if something is true.
Boolean: A value that can only be either true or false.
Logical operator: A symbol or words like “and,” “or,” and “not.”  

Introduction (10 minutes)
As a group, play a couple rounds of the I Spy game. In the game, a spy chooses an object,
then describes only one part of it to the players. The players then have to look around their
environment and guess what the spy saw. A student who guesses correctly gets to be the
next spy.

What decisions did you have to make? What was your thought process when trying to figure
out what the spy saw? To play I Spy, you were thinking in terms of conditions.

 Watch this video to learn more about conditional code.

Practice (35 minutes)
Now use Swift Playgrounds Learn to Code 1 to complete the puzzles with green checkmarks
in the list at right.

Think about it: What kinds of decisions did your code make using the if statement?  
How did you combine for loops and if statements? Why?

 7

http://education-static.apple.com/swift-playgrounds/04-conditional-code.mp4
http://education-static.apple.com/swift-playgrounds/04-conditional-code.mp4

Scavenger hunt (1 session)
1. Each student should write two conditions on separate  

pieces of paper—for example, “Is a rectangle” or “Starts
with the letter C.” Then put the bits of paper in a hat.

2. In small groups, pick two questions out of the hat and take
three to five pictures of things around the room that fit
each condition.

3. Create a photo album using a presentation app like
Keynote, creating a section for each condition. Don’t label
the conditions yet.

4. Present your photo album to another group to see if they
can guess the conditions. If there’s a correct guess, add
the conditional statement—for example, “If blue, then take
picture”—to the album page.

Think about it: Were there cases that were difficult to judge
whether a photo matched? How would a computer handle
these cases?

MeeBot Dances (1 session)
1. If you have a MeeBot robot from UBTECH, download the

MeeBot Dances lesson in Swift Playgrounds.

 
 

2. Go through the lesson as see how you can apply functions,
for loops, and conditional code to make MeeBot dance.

3. Create your own dance routine. You can even choose your
own music on the last page.

Think about it: How did you use code to reflect the tempo  
of the music?

Think Logically: Conditional Code
Take It Further 3

 8

If orange,
then take
picture.

Think Again and Again: While Loops 4

While Loops

Introduction

Running Code While…

Creating Smarter While Loops

Choosing the Correct Tool

Four by Four

Turned Around

Land of Bounty

Nesting Loops

Random Rectangles

You’re Always Right

While loop: A loop that runs a block of code as long as a given  
condition is true. When the condition is false, the loop stops running.

Introduction (5 minutes)
In topic 2, you learned about functions and for loops. What was the dance you did together?
How would you use for loops to write the function for the dance?

Now think about if you wanted to do that dance at the school dance. How would you know
when to stop dancing when the song ended?

You’d use a conditional code—if song plays, then dance. Or more clearly, a while loop—while
the song plays, dance.

This is different from a for loop, which tells a computer to run a block of code a certain
number of times—for example, dance in a circle 10 times. A while loops tells the computer to
run a block of code until something happens. So dance in a circle until the song stops playing.

Watch this video to learn more about while loops.

Practice (40 minutes)
Now use Swift Playgrounds Learn to Code 1 to complete the puzzles with green checkmarks
in the list at right.

Think about it: When did you use for loops and while loops? How did you decide?

 9

http://education-static.apple.com/swift-playgrounds/05-while-loops.mp4
http://education-static.apple.com/swift-playgrounds/05-while-loops.mp4

Hide and seek again (1 session)
1. Hide a small object in or near the room.

2. Stand in one spot and use the iPad camera to record
yourself giving directions for someone to find the object.
The directions should start from where you’re standing.
Use functions, for loops, and while loops where you can.

3. Now trade videos with another student. Watch their video
to try to find the hidden object. Did you find it?

4. Review both videos together. Write down the instances
where you used for and while loops in the directions.

Think about it: Did using loops make things easier this time?
Were there cases where it was harder?

21 Questions (1 session)
1. Let’s take a look at the Answers Starting Point again.

Download this version of it.

 
 

2. This Answers template is set up for you to play 21
Questions. Take a look at the code first. What will the  
code do?

3. The creator decides on an object or a thing that they enter
as the answer in the code. The player can ask the creator
21 yes or no questions.

4. After each question, the player can enter their guess in  
the live view to check it. Be sure the creator hands over
their playground with the live view in full screen so the
player can’t see the code and the correct answer.

Think about it: What coding concepts did this playground
use, and how are they being used?

Think Again and Again: While Loops
Take It Further 4

 10

http://education-static.apple.com/LtoC12/Lesson5_21_Questions.playgroundbook.zip
http://education-static.apple.com/LtoC12/Lesson5_21_Questions.playgroundbook.zip

Think the Same Idea: Algorithms 5

Algorithms

Introduction

The Right-Hand Rule

Adjusting Your Algorithm

Conquering a Maze

Which Way to Turn?

Roll Right, Roll Left

Introduction (5 minutes)
As a group, name some things you do all the time that require multiple steps to complete—
for example, brushing your teeth or making a sandwich. These are all algorithms.

Pick one example and have multiple students give directions for how they do it. Were  
their directions the same? Where did they differ? Did they all accomplish the same thing  
in the end?

Watch this video to learn more about algorithms.

Practice (40 minutes)
Now use Swift Playgrounds Learn to Code 1 to complete the puzzles with green checkmarks
in the list at right.

Think about it: How many different ways do you think there are to solve each puzzle?  
Who had the shortest algorithm? Who had the most interesting one?

Algorithm: A step-by-step set of rules or instructions.
Pseudocode: An informal description of code or a concept that’s  
intended for human reading.

 11

http://education-static.apple.com/swift-playgrounds/06A_Algorithms2018.mov
http://education-static.apple.com/swift-playgrounds/06A_Algorithms2018.mov

Who’s the tallest? (1 session)
1. Split the group into a few small groups. Each group will

come up with a way, or an algorithm, for someone to
determine who the tallest person is. It doesn’t count if  
you just know or can tell just by looking!

2. Draw on your coding knowledge to come up with  
the steps for your algorithm. You can invent your own
pseudocode to write your algorithms with as much  
coding terminology as possible.

3. Have each group present their algorithm. The entire group
should perform it.

Think about it: Which algorithm seems most efficient?  
If you wanted to find the shortest student, what would you
change in your algorithm?

Parrot (1 session)
1. If you have a drone from Parrot available, download  

the Parrot lesson in Swift Playgrounds.

 
 

2. Use all the coding skills you’ve learned so far to make  
the drone take off, land, move in all directions, and make
acrobatic figures.

3. Finally, create an algorithm for your drone’s flight path  
to get from point A to point B.

Think about it: How did the drone’s speed affect your  
flight paths? 

Think the Same Idea: Algorithms
Take It Further 5

 12

6Think Like a NewsBot: Variables

Variable

Introduction

Keeping Track

Bump Up the Value

Incrementing the Value

Seeking Seven Gems

Three Gems, Four Switches

Checking for Equal Values

Round Up the Switches

Collect the Total

Variable: A named container that stores a value. The value can 
change over time.

Introduction (5 minutes)
Imagine you’re moving to a new home. You’d probably put your belongings into boxes,
labeling them with a word or two to describe the contents. For example, if a box contains
trophies, you might label the box “Trophies.” This example suggests three important  
features of a container.

When we program a computer, we use something called variables instead of boxes.  
Variables are similar to boxes—they have both a label (a name) and contents (a value).  
The value or contents can change, but the label or name can’t. We can find a variable’s  
value or contents by finding the variable with the correct name or label.

Watch this video to learn more.

Practice (40 minutes)
Now use Swift Playgrounds Learn to Code 2 to complete the puzzles with the green
checkmarks in the list at right.

Think about it: How did using variables help you with the app?

 13

http://education-static.apple.com/swift-playgrounds/07-variables.mp4
http://education-static.apple.com/swift-playgrounds/07-variables.mp4

6

Newsbot (1 session)
1. For this activity, you’ll create NewsBot—a robot that can

automatically write a short article. First, think about a news
or sporting event, and what pieces of information you
might need to write about it.

2. Brainstorm four to six variables, like a team name, score,
and event date. Write a two- to three-sentence story using
the variables, which NewsBot can then fill in for other
similar events.

3. Pair up. One of you provides the information for each
variable to fill in the story. Then switch. Do you have two
complete stories that make sense?

Think about it: Did any variable names work better than
others? Why or why not?

Sphero Arcade (1 session)
1. If you have a Sphero SPRK+ robot available, download  

the Sphero Arcade lesson in Swift Playgrounds.

 
 

2. Apply functions and variables to aim, detect collisions,  
and eventually build your own version of Pong.

3. On the Play Sphero Pong page, analyze the code before
running or editing it. What does each command do?

4. What elements of the game did you change using
variables?

Think about it: What other games could you customize  
in the way that you did with Pong?

Think Like a NewsBot: Variables
Take It Further

 14

Types

Introduction

Deactivating a Portal

Portal On and Off

Setting the Right Portal

Corners of the World

Random Gems Everywhere

Initialization

Introduction

Initializing Your Expert

Train Your Expert

Using Instances of Different Types

It Takes Two

Think Like an Architect: Types

Type: A named grouping of properties (the features) and methods  
(the behaviors) of a kind of data.
Initialization: The act of creating a new instance of a type, which  
includes setting initial values for any properties of the type.

Introduction (5 minutes)
How many different types of buildings can you think of? Pick one type. What makes it
unique? In other words, what are some specific features of that particular type of building?
What typically happens in it? We’ll call these behaviors. For example, a school has
classrooms (features) and the bell rings between class periods (behavior). Does everyone
agree on the properties and behaviors? Why or why not?

If we use a computer program to help us construct the building, we have to be very
specific. We need to define its type by providing the properties (which we called features)
and methods (what we called behaviors).

Watch this video to learn more.

Practice (40 minutes)
Now use Swift Playgrounds Learn to Code 2 to complete the puzzles with the green
checkmarks in the list at right.

Think about it: What were the types in the app? What did you initialize?

 15

7

http://education-static.apple.com/swift-playgrounds/08-types.mp4
http://education-static.apple.com/swift-playgrounds/08-types.mp4

7

Be an architect (1 session)
1. Choose a type of building, either real or imagined.

2. Think of five to six variables to describe what your type of
building looks like. These variables shouldn’t contain any
values; instead, they should be descriptive of values—like
“height” or “numberOfWindows.”

3. Add values next to the variables. This describes a specific
instance of the building type. In Swift terminology, you’re
initializing an instance of the building type.

4. Finish the initialization by using a drawing app like Notes  
to sketch the building type, reflecting the variables  
and values.

5. Find a partner and trade the lists of your building types’
variables and values. Draw each other’s building types,
then share your drawings. How similar are they?

Think about it: Can you think of ways to make the  
drawings look more alike?

Rock, Paper, Scissors (1 session)
1. Download the Rock, Paper, Scissors challenge in Swift

Playgrounds.

 
 

2. Explore the lesson. How does the code work? What coding
concepts do you recognize?

3. Now try to create a version of the game in which you use
your own rules and add new actions. To do this, you’ll need
to define the game’s type and initialize it, along with the
associated properties and methods.

Think about it: What were the properties and methods  
in the original game? What were the new properties and
methods you added to personalize the game?

Think Like an Architect: Types
Take It Further

Type: rocketHouse
numberOfEngines = 4
height = 15 meters
numberOfWindows = 8
color = Space Gray
doorShape = Rounded rectangle

 16

 © 2018 Apple Inc. All rights reserved. Apple, the Apple logo, iPad, Keynote, and Pages are trademarks of Apple Inc, registered in the U.S. and other countries. Swift and  
Swift Playgrounds are trademarks of Apple Inc. Other product and company names mentioned herein may be trademarks of their respective companies. November 2018

Swift Playgrounds
App Design Journal

YOUR NAME

APP NAME

Evaluate
Observation
Interview

Prototype
Design
Flowchart
Build

Plan
UI/UX 
iOS features 
Design

Brainstorm
Purpose
Ideas
Audience
Focus
Reiterate

Welcome
Your Keynote app design journal will help you keep track of your ideas and guide you as you cycle through the
four stages of the app design process. You can play it through to see what’s in it, but you’ll work in slide view to
add notes, images, shapes, and more. Feel free to add and duplicate slides, and refer back to it during current
and future app projects.

Overview
The brainstorming stage allows you to identify problems and come  
up with possible solutions. This section includes a few key topics for  
you to think through. Some topics have optional Go Further activities  
if you’re interested in exploring more. Jot down as many ideas, notes,
and sketches that can help you design an app for solving a problem  
in your community.

Brainstorm
Purpose
Ideas
Audience
Focus
Reiterate

�3

Define the opportunity, problem, or challenge
Before you can start to explore different options for your app, you need to be clear on  
what the opportunity, problem, or challenge is.

1. What do you know about the opportunity, problem, or challenge?

2. What questions do you need to find answers to?

3. Can you explain the opportunity, problem, or challenge in just one sentence?

Brainstorm
Purpose
Ideas
Audience
Focus
Reiterate

�4

Brainstorm
Purpose
Ideas
Audience
Focus
Reiterate

My favorite apps
Think about the apps that you use. Identify each app’s purpose and why you use it. Which
do you use most, and which did you stop using after just a few times? Why did you
download them in the first place? Brainstorm a list of your favorite apps, and identify their
purposes and the features that make them good.

�5

App purpose: I like this app because . . .

App purpose: I like this app because . . .

App purpose: I like this app because . . .

App purpose: I like this app because . . .

App purpose: I like this app because . . .

My ideas
Brainstorm a list of apps you’d like to build. These could be new ideas, apps to solve specific
problems, apps you think you can improve or personalize, or something silly! Browse the  
App Store for inspiration. Keep adding to this list and revisit it, as some ideas might become
more or less interesting or crazy in the future.

Brainstorm
Purpose
Ideas
Audience
Focus
Reiterate

�6

Add your ideas.

Brainstorm
Purpose
Ideas
Audience
Focus
Reiterate

My app idea
From your brainstorming list, select one app idea to develop further and describe it below.

�77

Write a description of what the app does.

App name:

Go Further
Do a little research on your initial  
top ideas. Take a good look at the
App Store. Do your app ideas already
exist? Don’t be discouraged if you
find one or several that are like the
app you’ve imagined. It just means
you had a good idea. And maybe  
now that you’ve seen a bunch of
similar apps, you can see ways of
improving them.

For your favorite app idea, identify  
its top competitor on the App Store.  
If you can, download the app. Then
check it out to answer the questions
at right.

If there are any user reviews on the
App Store, be sure to read those
carefully, too. What are people finding
difficult about the app? What else do
they wish the app could do? Where
are people getting confused? How
would your app address each of
these concerns?

My app’s top competitor

Add example images  
of your app’s top
competitor here.

Can you suggest improvements to the user interface?

How could it be designed better?

Is it easy to use? Why or why not?

�8

It’s important to design with a target audience in mind. Who do you want using your app? Brainstorm
Purpose
Ideas
Audience
Focus
Reiterate Explore apps from

different categories  
in the App Store.  
Take a look at the  
icons, screenshots,  
and descriptions.  
Add example images
here to keep track of
your research.

What have you learned about the audience those apps are meant for?

Did the developers do a good job communicating that?

Judging from the screenshots or preview video, do you think the apps are appropriate  
for their intended audiences?

�9

What does this person do?

How old is the person?

Why is the person using the app?

Does the person prefer pictures or words?

How often does the person use their device?

Include other details.

Go Further
For your app idea, create a persona
for each type of person who would
use the app.

Duplicate this slide to outline  
each persona.

[Optional] Illustration or
stock photo of the persona

�10

Focus
Before you commit to your app, go back and review your list of app ideas. Which ones  
seem most interesting? Focus on a few ideas for further brainstorming. What purposes do
they serve and how do they solve issues? Who are the audiences? Write app statements to
clearly define the apps’ purposes. This can help you decide whether they’re good ideas or
not. Compare your new ideas to your favorite app idea. Is it still your favorite?

Brainstorm
Purpose
Ideas
Audience
Focus
Reiterate

What will your app do? Why does this need exist?

What will your app do? Why does this need exist?

What will your app do? Why does this need exist?

�11

My app will . . . because . . .

My app will . . . because . . .

My app will . . . because . . .

Plan
UI/UX 
iOS features 
Design

Overview
The planning stage is when you figure out the details of your app and
how it can achieve its goal.

Consider these three key areas as you develop your apps: UI/UX, iOS
features, and design. The more you learn about each topic, the more
advanced your app designs will be. The Apple Developer website is a
good resource for you to learn more about these topics.

�12

Apple Developer website

https://developer.apple.com
https://developer.apple.com

UI/UX
A good app should be easy to use. That’s where the user interface (UI) design comes in. A
well-designed UI makes for a good user experience (UX). Think back to the first times you
used some of your apps, or try using a new app. What was the experience like? Did you get
confused navigating them? Review elements like font size, icon shape and placement, and
the navigation from screen to screen. Even the smallest element makes a difference in how
someone experiences your app. Be sure to review the Human Interface Guidelines.

Go back to your list of favorite apps and choose one to review. Think about the features that
make it easy to use.

Plan
UI/UX 
iOS features 
Design

Review of my favorite app

�13

Human Interface Guidelines

https://developer.apple.com/ios/human-interface-guidelines/overview/design-principles/
https://developer.apple.com/ios/human-interface-guidelines/overview/design-principles/

1.

2.

3.

4.

5.

Go Further
Now consider the rest of the list of
your favorite apps. Rank them in
terms of their UI design. Which apps
are easy to use and seem to just
work? Write down the reasons that
some apps are easier to use than
others. Did you know what to do
immediately? How many taps did it
take to get going on the app? The
answer should be very few. First
impressions count. Compare your
notes with other students. Did you
agree on the reasons?

�14

Keyboard
It’s a very basic feature, but the keyboard is essential to many apps so users can input
names, numeric data, and even emoji. It’s necessary for many apps, including email, a  
word cloud app, or a translation app where you type a phrase and hear it in another
language. What apps can you think of that use the keyboard? What kind of data do  
the apps take in?

Camera and microphone
Many apps use the camera and microphone to record sights and sounds. Think about  
apps that let you create movies, music, and photo albums. What about apps that let you
communicate, like FaceTime and Messages? Or analysis apps, where you can overlay a
graph onto a photo or mark it up for analysis? How many ways can you think of to use the
camera and microphone?

Touchscreen
Both iPhone and iPad have a touch-sensitive screen. You can create apps that detect a user
interaction, such as tapping the screen once, double-tapping, swiping, or dragging a button
or an object. Think of the possibilities for games and other user interfaces that use touch as
a very natural interaction with elements on the screen.

How might you use these features in your app?

Plan
UI/UX
iOS features

The basics
Get connected
Get innovative
Accessibility
Feature smash

Design

The basics
@
A

�15

Wi-Fi
Does your app need to connect to the Internet to work? While most people may have access
to Wi-Fi, think about what happens with your app when a user can’t connect to a Wi-Fi
network. Does having Wi-Fi access fit with your target audience persona?

GPS
iOS devices have a built-in GPS (global positioning system) that shows where they’re located
on the earth within about 15 feet. It can also detect altitude (vertical distance from sea level).
The Maps and Weather apps on your iPhone use GPS.

Bluetooth
This technology lets iOS devices connect with other nearby devices, such as a speaker to play
music, a robot like Sphero that your device can control, or a digital thermometer.

How might you use these features in your app?

Get connectedPlan
UI/UX
iOS features

The basics
Get connected
Get innovative
Accessibility
Feature smash

Design

�16

Speech recognition and machine learning
Try Siri out. Siri can recognize your speech. And if you continue to use Siri, you’ll notice that  
it gets better at knowing what you want. That’s the machine learning part. Which apps that
typically use the keyboard to collect information can instead use speech recognition and
machine learning? What types of audiences would benefit from these features?

Accelerometer and gyroscope
The accelerometer can detect whether a device is accelerating, decelerating, or in zero gravity.
The gyroscope references direction, so it can measure the rotation of a device. Together, they
can detect how iOS devices are being moved in three-dimensional space. Could you create an
app that recognizes if the user is falling? Think about the Health app and the level tool in the
Compass app on iPhone. How do they use the accelerometer and gyroscope?

Augmented reality
With augmented reality, you can blend digital objects and information with your real-world
environment. Imagine seeing a life-size elephant right in your backyard or seeing the images  
in your favorite book come to life.

How might you use these features in your app?

Get innovativePlan
UI/UX
iOS features

The basics
Get connected
Get innovative
Accessibility
Feature smash

Design

�17

iOS supports multiple ways to access onscreen content. People with physical impairments
can use Siri or Dictation to interact with apps. People with visual impairments can increase the
size and contrast of screen elements, or use the VoiceOver screen reader and navigate your
app entirely by sound. But iOS accessibility features don’t help only users with disabilities—
they can help all users access your app in whatever ways they’re comfortable with.

Try the iOS accessibility features so you know firsthand how they work.

Accessibility

How might you use these features in your app?

Plan
UI/UX
iOS features

The basics
Get connected
Get innovative
Accessibility
Feature smash

Design

�18

Now that you’ve learned about various features, it’s time to see what combination works best
for your app. First, stretch your imagination and try combining different features. Write down
all the features on separate pieces of paper and fold them up. Take turns drawing at least two
pieces of paper and coming up with ways to use those features together. For example, you
could use the accelerometer and Bluetooth together to connect to a robot and use your
device as the remote control.

Feature smash

Feature 1 Feature 2

Feature smash

Plan
UI/UX
iOS features

The basics
Get connected
Get innovative
Accessibility
Feature smash

Design

�19

Example:Go Further
Now think about your app. Which
features are essential to make your
app state of the art? Which ones give
it a wow factor? It could be, “Wow,
that was so easy!” or “Wow, I’ve
never seen that before!” Remember,
you want your app to be unique, but
also simple and easy to use.

Insert a new slide and map out what
features you want to include in your
app, and how they help your app
accomplish its goal.

Bug name
Keyboard: Text data

Where I found my bug
GPS: Location data

How many of the bugs there were
Keyboard: Numeric data

Photo of the bug
Camera: Image data

My Bug app  

�20

Give your app some style and personality! But remember to keep it simple. You want the
purpose of your app to shine through; you don’t want too many colors or unnecessary
elements to distract your users. Create a mood board to guide your app design.

Choose a color scheme.

Add example images of the types of visuals needed.

What fonts will your app use?

Add phrases of design principles, such as “Keep it simple,” “Modern,” and so on.

Add sound files or describe the sounds your app will use to notify users of something,
immerse them in a game atmosphere, or enhance the app mood.

DesignPlan
UI/UX 
iOS features 
Design

Be sure to review the Human Interface
Guidelines again.

�21

Be sure to review the Human Interface
Guidelines again.

https://developer.apple.com/ios/human-interface-guidelines/overview/design-principles/
https://developer.apple.com/ios/human-interface-guidelines/overview/design-principles/
https://developer.apple.com/ios/human-interface-guidelines/overview/design-principles/
https://developer.apple.com/ios/human-interface-guidelines/overview/design-principles/

Design a few different icons for your appGo Further
An appealing icon matters to give a
good first impression. When people
are searching the App Store, they
notice a good icon. You might have
a brilliantly coded app with a slick
user interface, but people will never
download it if your app icon doesn’t
convey the right message.

Design a few different icons for your
app. Show them to other students
and ask them what they think your
app does based on just the icon.
Which one did they like the best?
Pro tip: You can take a screenshot
of your home screen and add in
your icon to see if it stands out.

�22

Overview
Take a look at this video from WWDC on 60-second prototyping to find  
out how you can use Keynote to quickly test ideas. For a more in-depth
exploration of app prototyping, watch this video from WWDC on iterative
design. You don’t need to watch the whole video, but it should give you  
a better idea of what to expect when prototyping with Keynote.

Prototype
Design
Storyboard
Build

�23

Video

this video

https://developer.apple.com/videos/play/wwdc2017/818/
https://developer.apple.com/videos/play/wwdc2016/805/
https://developer.apple.com/videos/play/wwdc2016/805/
https://developer.apple.com/videos/play/wwdc2017/818/

Design
What do the main screens of your app look like? What features appear where?
Take a look at your design mood board again and mock up a few screens. You can
use Keynote or a drawing app, or draw on index cards to create each screen. Take
screenshots or photos of your images and add them to the app you’ll build your
prototype in. 
 
Tip: Not feeling artsy? Use existing apps as inspiration. Take screenshots of 
app screens that have great features, add them as a layer or template, and
customize them.

Prototype
Design
Storyboard
Build

�24

Storyboard
Insert a new slide, and create a flowchart like the sample below using the images
you created. What are the key stages of the app, and how does the user get there?
Be specific. For example, at what point is a certain feature available? Or, what
happens when a user taps yes or no on the screen? What data does your app
collect or provide? How is it represented? Map out the conditional statements
necessary for your app—for example, if user taps yes, then x; else, y. What other
coding concepts would apply in your app? Are there parts that repeat and would
use a loop?

Prototype
Design
Storyboard
Build

�25

First, take a look at this finished prototype file for inspiration.
Then use Keynote on a Mac or iPad or use an iOS app like
POP - Prototyping on Paper to build your prototype.

Build

Bug buzz
 Take photo

 view bugs

search bugs

For each version of your prototype, think about the following:

• Can users choose to engage with the content in different ways?

• Can you provide different representations of the same data?

• What’s the first screen (view) that the user sees? Which buttons are visible?  
Then what happens?

• Decide where and what kinds of graphics and icons your app will display.

• How many taps will it take for users to find out what they need to know?

• How would users navigate between views?

• What are some simple ways to communicate the features of your app without  
using words?

Prototype
Design
Storyboard
Build

Prototyping in Keynote

1. Set up the Keynote document to be  
the right size for your app prototype to
run on your demo device. Tap the More
button (…), then tap Document Setup.
Tap Slide Size, choose Custom Slide
Size, then enter one of these sets of
dimensions:

• iPad: width=834 pts, height=1112 pts

• iPhone 8: width=375 pts, height=812 pts

2. Decide on the colors and fonts you’ll
use, then design the navigation buttons.
Park these design tools in working
slides that you can delete later.

3. Build each screen on a different slide.

4. Create interactive links between the
slides so that their buttons trigger touch
events. Tap the object you want to link,
tap Link, then choose Link To Slide.

5. To make sure that the presentation
changes slides only when the user taps
the navigation buttons, tap the More
button (…), tap Presentation Type, then
tap Links Only.

�26

prototype

POP - Prototyping on Paper

http://education-static.apple.com/coding-club-kit/playgrounds-prototype.key
https://itunes.apple.com/us/app/pop-prototyping-on-paper/id555647796?mt=8
http://education-static.apple.com/coding-club-kit/playgrounds-prototype.key
https://itunes.apple.com/us/app/pop-prototyping-on-paper/id555647796?mt=8

Evaluate
Observation 
Interview

Overview
Now it’s time to test your prototype. You can have your classmates,
family, and others try it. If possible, try to find testers who fit the target
audience for your app. You should present your prototype, explain your
new app idea, and tell the testers that you want them to try it. You can
provide guidance if needed, but the objective is to observe the user
and ask questions later.

�27

Watch the tester explore your app, and use the questions below as guidelines for recording
your observations.

Observation

Did the user know what buttons to tap?

Was the user ever confused? At what point?

Did the user enjoy the app?

Did the user smile or laugh at specific points?

Did you observe anything else?

Evaluate
Observation 
Interview

�28

Interview

What did you like and not like about the app?

Is the app useful? Would you use an app like this?

What more might you want to see in this app?

After the user finishes testing your app, interview them to better understand their experience.
Here are a few questions to get you started:

Evaluate
Observation 
Interview

�29

Brainstorm
Purpose
Ideas
Audience
Focus
Reiterate

Review of my app

Reiterate
Remember, this is a design cycle and it’s time to go back to the brainstorming stage.  
As you repeat the design cycle, think about what you learned from your evaluation. Did
problems come up, and if so, how can you fix them? How can you improve your app?

Another important question to ask yourself is whether you’re still excited about your app  
idea. If not, it might be time to go back to your list. Not all ideas pan out. One objective  
of the design cycle is to help you test concepts and figure out what’s worth pursuing.

Do you still want to continue with your idea? If so, write the name of your app below,  
score it out of five stars, and write an app review.

�30

Go Further
Revisit your criteria for what
makes an app great from the
Purpose topic and answer the
questions on the right.

Continue to revisit the different
topics throughout the design
cycle. Revise your prototype
accordingly, testing and retesting
until you have the next great app.

Is your app innovative?

Does it do something that existing apps don’t do?

Is it an app someone would use over and over again?

How can you improve your app?

�31

App Pitch
You’ve tested and improved your app idea. Now it’s time to polish it up and share it!
Make a three-minute presentation or video of your pitch. A good pitch will tell a strong
and clear story that makes people want your app!

Your pitch should include:

• Why: The problem your app is trying to solve

• Who: A description of who your app is for

• What: An overview of the app

• How: Details about the UX and UI, including:

- The design

- The features

- The coding concepts it uses

- The prototype and any visuals

- Improvements made based on user testing

�32

© 2018 Apple Inc. All rights reserved. Apple, the Apple logo, FaceTime, iPad, iPhone, Keynote, Mac, and Siri are trademarks of Apple Inc., registered in the U.S. and other countries. Swift and Swift
Playgrounds are trademarks of Apple Inc. App Store is a service mark of Apple Inc., registered in the U.S. and other countries. The Bluetooth® word mark and logos are registered trademarks owned
by Bluetooth SIG, Inc. and any use of such marks by Apple is under license. Other product and company names mentioned herein may be trademarks of their respective companies. November 2018

	playgrounds-guide
	playgrounds-coding
	playgrounds-appjournal

