
Get Started with Code Curriculum Guide
September 2017

Swift Playgrounds Preview Guide | June 2016 2

Everyone Can Code
Technology has a language. It’s called code. And we

believe coding is an essential skill. Learning to code

teaches you how to solve problems and work together in

creative ways. And it helps you build apps that bring your

ideas to life. We think everyone should have the

opportunity to create something that can change the

world. So we’ve designed a new programme with the tools

and resources that let anyone learn, write and teach it.

Get Started with Code Curriculum Guide | September 2017 3

Everyone Can Code Curriculum

Everyone Can Code Curriculum | Overview | Key Features | Course Outlines | Additional Information | Curriculum Alignment

The Everyone Can Code programme includes a range of resources that take students all the way from no coding experience to building their first apps. The
table below provides an overview of all the free teaching and learning resources available.

Curriculum Device Audience App Prerequisites Overview Learning materials Support resources
Number of lesson  
hours included

Years 1 to 3 None Begin to think like coders with  
hands-on explorations of coding
concepts using visual-based apps.

• codeSpark Academy app
lessons

• Tynker Space Cadet course

• Get Started with Code 1:
Teacher Guide

30 hours, including
Teacher Guide and  
app lessons

Years 4  
to 6

None Explore fundamental coding
concepts and practise thinking like
coders using visual-based apps.

• Tynker Dragon Spells course • Get Started with Code 2:
Teacher Guide

36 hours, including
Teacher Guide and  
app lessons

Year 7  
and up

None Learn fundamental coding concepts
using real Swift code.

• Swift Playgrounds app
• Learn to Code 1 & 2 lessons
• iTunes U course

• Learn to Code 1 & 2:  
Teacher Guide

• Apple Teacher Learning Center
Swift Playgrounds badges

Up to 85 hours, including
Teacher Guide and Learn
to Code 1 & 2 lessons

Year 7 
and up

Learn to Code  
1 & 2

Expand coding skills and start
thinking more like an app developer.

• Swift Playgrounds app
• Learn to Code 3 lessons

• Learn to Code 3:  
Teacher Guide

Up to 45 hours, including
Teacher Guide and Learn
to Code 3 lessons

Year 10  
and up

None Get practical experience with the
tools, techniques and concepts
needed to build a basic iOS app  
from scratch.

Intro to App Development with
Swift book and project files

• Intro to App Development with
Swift: Teacher Guide

90 hours

Year 10  
and up

None Build a foundation in Swift, UIKit and
networking through hands-on labs
and guided projects. Students can
build an app of their own design by
the end of the course.

App Development with Swift
book and project files

• App Development with Swift:
Teacher Guide

180 hours

Get Started with Code Curriculum Guide | September 2017 4

Overview

The early years of schooling are a great time to introduce coding concepts as a
way of thinking about the everyday and digital worlds, and to develop foundational
skills in computational thinking. Apps that are specifically designed for younger
learners, such as codeSpark Academy and Tynker, use visual-based coding
puzzles to develop problem-solving skills, encourage persistence and promote
creativity. codeSpark Academy is designed for learners aged 5 to 7. The game’s
word-free interface allows pre-readers, English language learners and students
with reading challenges to all play. In Tynker, students aged 5 to 11 begin
experimenting with visual blocks, then progress to text-based coding as they
solve puzzles and build projects.

In the classroom
Tynker and codeSpark Academy, along with the lessons in the Get Started with
Code Teacher Guides, are designed to help you bring coding into the early primary
classroom. The lessons highlight key coding concepts, while demonstrating how
coding is a way of thinking that can be applied to other learning areas and
everyday life.

The Teacher Guides provide the support you need to help your students solve  
the coding puzzles — no matter what your level of coding experience. Extension
activities, app design activities, reflection questions, journal prompts, a grading
rubric and more are included to help you deepen students’ understanding of the
material. You can teach the lessons in a single block or in sections. Correlation
maps in the appendices provide a preliminary alignment of the lessons to the
Interim Computer Science Teachers Association K–12 Computer Science
Standards for Level 1.

Everyone Can Code Curriculum | Overview | Key Features | Course Outlines | Additional Information | Curriculum Alignment

Get Started with Code Curriculum Guide | September 2017 5

codeSpark Academy
Learn. Students solve puzzles in this word-free
game to learn basic computer science concepts
such as sequencing, looping, conditional
statements and more.

Build. Students then apply their knowledge by
coding their own projects in Game Maker.

Self-directed. No coding experience is needed
to teach, learn or play. The curriculum and
teacher dashboard for progress reports are
available free to educators in 10 languages.

Tynker
Coding environment. Students move at their
own pace through scaffolded coding puzzles  
to learn concepts and apply them creatively.

Automatic assessment. A teacher dashboard
assesses students’ mastery of skills with
puzzles, quizzes and code analyses.

Swift feature. As students solve puzzles, they
can switch between visual blocks and Swift
blocks, allowing them to get familiar with Swift
and preparing them for future programming.

Get Started Teacher Guides
Downloadable files. Template files for student
activities and Keynote presentations support in-
class student learning.

Answer keys. Tynker and codeSpark Academy
puzzle solutions make it easy for you to help
students who are stuck.

Student work examples. See what the
activities can look like.

Reflections. These questions and prompts for
class discussion help you review and reinforce
the connection between applying the concept
inside and outside of a coding environment.

Tips and examples. Ideas for extending or
simplifying lessons are included throughout.

App design activities. These lessons
guide students through a design process
to conceptualise and prototype an app idea
that solves a problem in their class or school.

Key Features

Everyone Can Code Curriculum | Overview | Key Features | Course Outlines | Additional Information | Curriculum Alignment

Get Started with Code Curriculum Guide | September 2017 6

Course Outlines

Everyone Can Code Curriculum | Overview | Key Features | Course Outlines | Additional Information | Curriculum Alignment

Get Started with Code 1
By engaging in interactive, hands-on explorations of coding concepts
in the context of everyday situations, students will begin to think like
coders. They’ll learn about commands, sequences, loops, events and
algorithms. Working collaboratively, students will practise predicting the
output of their code, as well as debugging their own and others’ code.
They’ll also practise using their skills in visual-based coding apps, solving
puzzles and designing their own creations. Optional design activities guide
students through a design process to conceptualise and prototype an app
idea that solves a problem in their class or school.

Lesson 0 — Getting Started. Find out what students already know about
apps and coding, set up the class working wall, and introduce them to the
key apps they’ll use across the lessons. Students are introduced to the
various roles on an app design team.

Lesson 1 — You Can Order It: Introduction to Sequencing. Students
explore everyday sequences, construct a sequence based on a familiar
story, and solve puzzles in visual-based coding apps using simple
sequences. Students explore the different purposes that apps fulfil.

Lesson 2 — You Can Step It: Creating Sequences. By examining the
importance of order when sequencing instructions, students learn that the
same actions can be reordered to create a different sequence, and design
their own crazy dance. They discover more commands and solve more
complex problems in the coding apps. Students compare different apps
that help users learn new ideas.

Lesson 3 — You Can Choose It: Flexible Sequencing. Students learn that
some steps in a sequence can be flexibly ordered, and create their own
flexible sequences. They explore the different ways a puzzle can be solved
and share their code solutions with other students. Students explore apps
that help users engage with other people in their community.

Lesson 4 — You Can Do It Over and Over: Loops. Students identify
loops in everyday contexts and get creative with building their own body
percussion loops. They look at how loops are represented in coding and
use loops to streamline and simplify their code. Students learn about user
interface design and how it can make an app fun and easy to use. 

Lesson 5 — You Can Fix It: Debugging. Understanding the importance
of persistence and debugging in a range of contexts, students review and
apply their new coding skills to solve a challenge and debug other students’
solutions. They practise predicting the output of their code and identifying
bugs when code doesn’t execute as planned. Students dive into designing
apps to help solve a problem.

Lesson 6 — You Can Prompt It: Events and Actions. Students explore how
events can make their app play and code more engaging and responsive, and
learn how to code with events. They consider how we prompt events in
everyday life and create a robot remote control to practise calling events.
Students start to design their own apps.

Lesson 7 — You Can, If You Follow the Rule: IF Statements. Students
are introduced to conditional statements and find out how to recognise IF
statements in their everyday lives. They think about the IF statements that
work as the rules in familiar board games. Students code with IF statements,
making their code more responsive to conditions in the environment.
Students use flowcharts to show how their apps work.

Lesson 8 — You Can Solve It: Algorithms. Bringing together everything
they’ve learned so far, students design algorithms involving a series of steps
to solve a problem. They begin with simple recipes and progress to designing
and coding their own maze game. Students make prototypes of their apps
and complete a milestone project documenting their app design process.

Get Started with Code Curriculum Guide | September 2017 7

Everyone Can Code Curriculum | Overview | Key Features | Course Outlines | Additional Information | Curriculum Alignment

Course Outlines (continued)

Get Started with Code 2
In Get Started with Code 2, students will explore fundamental coding
concepts and practise thinking like coders. Along with learning about
algorithms, functions, loops, conditional statements and variables, they’ll
discover the basics of user interface design. Students will work both
collaboratively and individually as they strengthen their coding skills by
solving real coding problems, testing each other’s code, and designing
programs for a range of bots. They’ll also practise these skills in Tynker,
solving a range of problems and applying the concepts they learn in
classroom activities. Optional design activities guide students through
a design process to conceptualise and prototype an app idea that solves
a problem in their class or school.

Lesson 0 — Getting Started. Find out what students already know about
apps and coding, familiarise students with a visual-based coding app such
as Tynker, and set up students’ digital journals using an app like Seesaw.
Students are introduced to an app design challenge.

Lesson 1 — Think in Steps: Solving Problems with Algorithms. Students
discover algorithms as a set of instructions for solving a problem or
performing a task. In the Tynker app, students hatch a dragon of their
choice, then build algorithms to solve puzzles while learning sequencing
skills. Students design and test algorithms in classroom activities. Students
start brainstorming apps that can help solve a problem.

Lesson 2 — Think in Fixes: Debugging. Students explore finding and
fixing errors in their algorithms and in their coding. In Tynker, they modify
algorithms that have bugs in order to create a correct program for solving
the puzzles. Students learn about the role keyboards play in apps, and how
they might apply it to their own app ideas.

Lesson 3 — Think in Circles: Looking for Loops. Introduced to loops as
repetitive patterns, students design and test an algorithm to create a Loopy
Snake. In Tynker, they use for loops to solve puzzles by spotting patterns.
Students brainstorm how their app might make use of the built-in camera
and microphone.

Lesson 4 — Think in Bits: Composition and Decomposition. To devise  
an algorithm for performing a Cup Song, students break down the routine
into component moves. In Tynker, they solve problems by breaking them
down into smaller sub-problems. Students think about how the touchscreen
can make their app more interactive.

Lesson 5 — Think in Sets: Abstraction. Students explore similarity and
generalisation as they categorise objects into sets, then explain their
rationale. In Tynker, they use abstraction to spot similarities between
problems, solving increasingly complex puzzles with all their new coding
tools. Students think about how to use tools like Bluetooth to connect to
nearby devices.

Lesson 6 — Think in Patterns: Forming Functions. In building a
performance routine for a Command Bot, students break it down into
functions, then exchange algorithms to test predicted and actual outcomes.
In Tynker, students use name and call functions as they reuse sets of
instructions to code more efficiently. Students learn about the types of data
their app could connect to through GPS.

Lesson 7 — Think in Specifics: Conditional Statements. Students go on  
a Virtual Travel Adventure, defining their destination with a set of qualifying
conditions using if statements. In Tynker, they use if statements to handle
decision and alternatives within the puzzles. Students brainstorm innovative
ways to make their apps unique.

Get Started with Code Curriculum Guide | September 2017 8

Lesson 8 — Think in Cycles: While Loops and Nested Loops. Running
a virtual doughnut stand, students use while and nested loops to create
algorithms for Donut Bot to ice enough doughnuts for every customer. In
Tynker, students use loops to shorten their code. Students form app design
teams and start to prototype an app of their own.

Lesson 9 — Think In and Outside the Box: Variables, Input and Output.
Using variables to design an algorithm for a Poetry Jam Slam, students
perform a song or rap based on audience input. In Tynker, they use variables
as they tackle more complex puzzles, using all the coding skills they’ve
learned so far. Students conduct user interviews to help them target an
audience for their app.

Lesson 10 — Think in Practice: Design UI. Students analyse what makes a
good design, and come up with a sign for their school. In the Tynker activity,
they use all the skills they’ve acquired, completing the lessons of Get Started
with Code 2. Students learn about user interface and user experience and
create a mood board for their app design. They create an app pitch in the
milestone project.

Course Outlines (continued)

Everyone Can Code Curriculum | Overview | Key Features | Course Outlines | Additional Information | Curriculum Alignment

Get Started with Code Curriculum Guide | September 2017 9

Additional Information

Download the Get Started with Code resources
• Tynker

• codeSpark Academy

• Get Started with Code 1

• Get Started with Code 2

Download the Swift Playgrounds resources
• Learn to Code 1 & 2: iTunes U Course

• Learn to Code 1 & 2: Teacher Guide

• Learn to Code 3: Teacher Guide

• Swift Playgrounds app

Download the App Development with Swift guides
• Intro to App Development with Swift

• Intro to App Development with Swift: Teacher Guide

• App Development with Swift

• App Development with Swift: Teacher Guide

Additional resources
• Learn more about the Everyone Can Code programme.

• Learn more about Swift.

• Learn more about Xcode.

• Connect with other educators in the Apple Developer Forums.

• Learn more about codeSpark Academy.

• Learn more about Tynker.

Everyone Can Code Curriculum | Overview | Key Features | Course Outlines | Additional Information | Curriculum Alignment

https://itunes.apple.com/gb/app/tynker-learn-to-code-programming-made-easy/id805869467?mt=8
https://itunes.apple.com/gb/app/codespark-academy-with-the-foos-coding-for-kids/id923441570?mt=8
https://itunes.apple.com/gb/book/id1226776727
https://itunes.apple.com/gb/book/id1226776857
https://itunes.apple.com/gb/course/swift-playgrounds-learn-to-code-1-2/id1153807202
https://itunes.apple.com/gb/book/swift-playgrounds-learn-to/id1118578018?mt=11%5D
https://itunes.apple.com/gb/book/swift-playgrounds-learn-to/id1173709121?mt=11%5D
https://itunes.apple.com/gb/app/swift-playgrounds/id908519492?mt=8%5D
https://itunes.apple.com/gb/book/intro-to-app-development-with-swift/id1118575552?mt=11
https://itunes.apple.com/gb/book/intro-to-app-development-with-swift/id1118577558?mt=11
https://itunes.apple.com/gb/book/id1219117996
https://itunes.apple.com/gb/book/id1219118093
https://www.apple.com/uk/education/everyone-can-code/
https://www.apple.com/uk/swift/
https://itunes.apple.com/gb/app/xcode/id497799835?mt=12
https://forums.developer.apple.com/welcome
http://thefoos.com
https://www.tynker.com
https://itunes.apple.com/gb/app/tynker-learn-to-code-programming-made-easy/id805869467?mt=8
https://itunes.apple.com/gb/app/codespark-academy-with-the-foos-coding-for-kids/id923441570?mt=8
https://itunes.apple.com/gb/book/id1226776727
https://itunes.apple.com/gb/book/id1226776857
https://itunes.apple.com/gb/course/swift-playgrounds-learn-to-code-1-2/id1153807202
https://itunes.apple.com/gb/book/swift-playgrounds-learn-to/id1118578018?mt=11%5D
https://itunes.apple.com/gb/book/swift-playgrounds-learn-to/id1173709121?mt=11%5D
https://itunes.apple.com/gb/app/swift-playgrounds/id908519492?mt=8%5D
https://itunes.apple.com/gb/book/intro-to-app-development-with-swift/id1118575552?mt=11
https://itunes.apple.com/gb/book/intro-to-app-development-with-swift/id1118577558?mt=11
https://itunes.apple.com/gb/book/id1219117996
https://itunes.apple.com/gb/book/id1219118093
https://www.apple.com/uk/education/everyone-can-code/
https://www.apple.com/uk/swift/
https://itunes.apple.com/gb/app/xcode/id497799835?mt=12
https://forums.developer.apple.com/welcome
http://thefoos.com
https://www.tynker.com

Get Started with Code Curriculum Guide | September 2017 10

Get Started with Code 1 lessons align with the Algorithms and Programs concept of the Interim 2016 Computer Science Teachers Association (CSTA) K–12
Computer Science Standards for Level 1 for Grades K–2.

Curriculum Alignment: Get Started with Code 1

Alignment Get Started with Code 1 — CSTA K–12 Computer Science Standards Level 1 for Grades K–2

CSTA Standard

1A-A-7-1
Crediting Content

1A-A-5-2
Construct Programs

1A-A-5-3
Design

Document

1A-A-4-4
Representing

Data

1A-A-3-5
Decompose

1A-A-3-6
Categorising

Items

1A-A-3-7
Algorithms

1A-A-6-8
Analyse

and Debug

Overall Alignment • • • • • • •
You Can Order It:
Introduction to Sequencing • • • • • • •
You Can Step It:
Creating Sequences • • • • • • •
You Can Choose It:
Flexible Sequencing • • • • • • •
You Can Do It Over and Over:
Loops • • • • • • •
You Can Fix It:
Debugging • • • • • •
You Can Prompt It:
Events and Actions • • • • • •
You Can, If You Follow the Rule:
IF Statements • • • • • •
You Can Solve It:
Algorithms • • • • • •

G
et

 S
ta

rt
ed

 w
ith

 C
od

e
1

C
ha

pt
er

s

Key: •
Overall alignment •

Aligns to standard

Everyone Can Code Curriculum | Overview | Key Features | Course Outlines | Additional Information | Curriculum Alignment

Get Started with Code Curriculum Guide | April 2017 11

Curriculum Alignment: Get Started with Code 2

Get Started with Code 2 lessons align with the Algorithms and Programs concept of the Interim 2016 Computer Science Teachers Association (CSTA) K–12
Computer Science Standards for Level 1 for Grades 3–5.

Features are subject to change. Some features may not be available in all regions or all languages.

© 2017 Apple Inc. All rights reserved. Apple, the Apple logo, iTunes U, Keynote and Xcode are trademarks of Apple Inc., registered in the US and other countries. Swift and Swift Playgrounds are trademarks of Apple Inc. Other product and company names
mentioned herein may be trademarks of their respective companies. Product specifications are subject to change without notice. This material is provided for information purposes only; Apple assumes no liability related to its use. September 2017

Alignment Get Started with Code 2 — CSTA K–12 Computer Science Standards Level 1 for Grades 3–5

CSTA Standard

1B-A-2-1
Collaboration

Strategies

1B-A-7-2
Citation and

Documentation

1B-A-5-3
Plan

1B-A-5-4
Construct
Programs

1B-A-5-5
Mathematical
Operations

1B-A-3-6
Decompose

1B-A-3-7
Algorithms

1B-A-6-8
Analyse

and Debug

Overall Alignment • • • • • • • •
Think in Steps:
Solving Problems with Algorithms • • • • • •
Think in Fixes:
Debugging • • • • • • •
Think in Circles:
Looking For Loops • • • • • •
Think in Bits:
Composition and Decomposition • • • • • •
Think in Sets:
Abstraction • • • • •
Think in Patterns:
Forming Functions • • • • • • •
Think in Specifics:
Conditional Statements • • • • • • •
Think in Cycles:
While Loops and Nested Loops • • • • • • •
Think In and Outside the Box:
Variables, Input and Output • • • • • •
Think in Practice:
Design - UI • • • • • •

G
et

 S
ta

rt
ed

 w
ith

 C
od

e
2

C
ha

pt
er

s

Everyone Can Code Curriculum | Overview | Key Features | Course Outlines | Additional Information | Curriculum Alignment

Key: •
Overall alignment •

Aligns to standard

