
The Apple PSI System

Abhishek Bhowmick Dan Boneh Steve Myers
Apple Inc. Stanford University Apple Inc.

Kunal Talwar Karl Tarbe
Apple Inc. Apple Inc.

July 29, 2021

Abstract

This document describes the constraints that drove the design of the Apple private
set intersection (PSI) protocol. Apple PSI makes use of a variant of PSI we call private
set intersection with associated data (PSI-AD), and an extension called threshold private
set intersection with associated data (tPSI-AD). We describe a protocol that satisfies
the constraints, and analyze its security. The context and motivation for the Apple PSI
system are described on the main project site.

The Apple PSI system Apple Inc.

1 Introduction

Apple requires a private set intersection (PSI) protocol that must satisfy a rigid set of
constraints. We first describe the abstract problem that the protocol aims to solve and
then describe the set of required constraints. The remainder of the document describes
a specific protocol that meets the constraints. We describe the protocol in Section 4 and
analyze its security in Section 4.4. Section 5 discusses a number of real world considerations,
and Section 6 surveys existing PSI techniques in the literature and how they relate to the
problem at hand. The goal of this writeup is primarily to describe the Apple PSI system
and to inform the public how the protocol works.

2 Streaming threshold PSI with associated data

We begin by describing a warm-up problem we call PSI with associated data or PSI-
AD. In [CT10], a variant of this problem is called PSI with data transfer.

Let U be the universe from which hash values are selected. In the Apple PSI system,
the set U is the universe of all possible image hashes. The PSI-AD problem involves two
parties, a server and a client, with the following setup:

• The server has a set of hash values X ⊆ U of size n. As usual for a set, the hashes in
X must be distinct: every hash value can appear at most once in X.

• The client has an ordered list of m triples

Ȳ =
(

(y1, id1, ad1), . . . , (ym, idm, adm)
)
∈ (U × ID ×D)m.

Each triple (y, id , ad) contains a hash value y ∈ U , an identifier id ∈ ID, and as-
sociated data ad ∈ D. Every triple has a unique identifier id : if two triples in Ȳ
contain the same id , then both triples will also contain the same hash value and the
same associated data. In other words, two triples that contain the same identifier are
identical. We note that it is possible for two triples to contain the same hash value y,
but different identifiers.

The triples in Ȳ are provided to the client in a streaming fashion, one triple at a time, and
must be “processed” as they arrive at the client. This is the reason why Ȳ is defined as an
ordered list of triples.

Identifiers are not secret. We stress that the identifiers id ∈ ID in the triples Ȳ are
not secret. They are sampled as fresh independent random bit strings. The intent is for
the server to learn the entire list of identifiers in Ȳ . In practice they are used by the client
to address objects stored on the server.

1

The Apple PSI system Apple Inc.

Notation: We will use the following notation to define the problem.
For Ȳ ∈ (U × ID ×D)m define

• id(Ȳ) is the set of identifiers of triples in Ȳ . For example, if

Ȳ =
(
(y1, id1, ad1), (y2, id2, ad2), (y3, id3, ad3), (y1, id1, ad1)

)
then id(Ȳ) = {id1, id2, id3}.

• id(Ȳ ∩X) is the set of identifiers of triples in Ȳ whose first component is also in X. For
example, if X = {y1, y2} and Ȳ is as in the first bullet, then id(Ȳ ∩X) = {id1, id2}.

• Ȳid ∈ IDm is the list of identifiers in the triples in Ȳ . If Ȳ is as in the first bullet
then Ȳid = (id1, id2, id3, id1) ∈ ID4.

• Projection: we write Ȳ{id ,ad} ⊆ (ID × D) for the set of identifiers and associated
data in the triples in Ȳ . For example, if Ȳ is as in the first bullet then Ȳ{id ,ad} ={

(id1, ad1), (id2, ad2), (id3, ad3)
}

.

• Selection: for a set of identifiers T ⊆ ID we use Ȳ [T] ∈ (U × ID × D)≤m to denote
the list of triples in Ȳ whose identifiers are in T . For example, if Ȳ is as in the first
bullet and T = {id1, id2}, then Ȳ [T] =

(
(y1, id1, ad1), (y2, id2, ad2), (y1, id1, ad1)

)
.

• We write x ← d to denote an assignment of a value d to the variable x. For a finite
set X we write x←$ X to indicate that x is a random variable sampled uniformly over
X . For a randomized algorithm A we write x ←$ A(·) to denote the random variable
that is the output of A(·).

The PSI-AD problem is to design a protocol Π for the following functionality:

F
(
X ; Ȳ

)
:=
(
Ȳid , Ȳ [id(Ȳ ∩X)]{id ,ad} ; ⊥

)
.

This terminology means that at the beginning of the protocol the server has X and the client
has Ȳ . Once the protocol Π terminates, the server will learn Ȳid and Ȳ [id(Ȳ ∩X)]{id ,ad},

and nothing else. That is, the server learns the list of all identifiers Ȳid , and the set of
identifiers and associated data for all the triples in Ȳ whose first component is in X. The
server should learn nothing else. The client should learn nothing, although we usually relax
this a bit and allow the client to learn the size of X. We will come back to the precise
security requirements for the protocol Π in Section 4.4.

Remark 1 (Associated data). A PSI-AD protocol reveals to the server the associated data for
triples in Ȳ [id(Ȳ ∩X)]. However, the hash values y ∈ U in those triples should remain hidden
from the server. This gives the Apple PSI system flexibility in choosing what to embed in
the associated data. The system can choose to make the associated data independent of y, in
which case y remains hidden from the server. Or the system can choose to explicitly embed
y in the associated data so that the complete contents of the intersection is revealed. Either
way, a PSI-AD protocol is designed to reveal only the associated data of the intersection,
but reveal nothing else about the hash values.

2

The Apple PSI system Apple Inc.

Remark 2 (PSI-CA and PSI-AD). PSI cardinality, or PSI-CA, is a variant of PSI-AD
where the server learns the intersection cardinality (i.e., the size of id(Ȳ ∩X)) and nothing
else. PSI-CA is a special case of PSI-AD. To see why, consider an instance of PSI-AD
where the client selects all the identifiers and associated data independently at random
from (ID × D), and where ID is sufficiently large to that all the selected identifiers are
distinct with high probability. Then the server learns the cardinality of id(Ȳ ∩ X) and
nothing else. Indeed, all the identifiers and associated data in the server’s PSI-AD output
can be efficiently simulated just given the intersection cardinality. For this reason, designing
a protocol for PSI-AD is at least as hard as designing a protocol for PSI-CA.

2.1 Threshold PSI-AD

The Apple PSI system is designed to solve a slightly more complicated problem called
threshold PSI with associated data or tPSI-AD. The setup is as follows:

• As in PSI-AD, The client has an ordered list Ȳ ∈ (U × ID ×D)m of m triples.

• As in PSI-AD, the server has a set of hash values X ⊆ U of size n.

• In addition, there is a threshold parameter t known to both the server and the client.

The tPSI-AD problem is to design a protocol Π so that at the end of the protocol: (i) the
client only learns

∣∣X∣∣, and (ii) the server only learns Ȳid and

• if
∣∣∣id(Ȳ ∩X)

∣∣∣ ≤ t then the server learns id(Ȳ ∩X) ⊆ ID,

• if
∣∣∣id(Ȳ ∩X)

∣∣∣ > t then the server learns Ȳ [id(Ȳ ∩X)]{id ,ad} ⊆ (ID ×D).

In other words, if
∣∣id(Ȳ ∩X)

∣∣ ≤ t then the server learns the identifiers in id(Ȳ ∩X), but learns
no associated data. However, when

∣∣id(Ȳ ∩X)
∣∣ > t, the server learns Ȳ [id(Ȳ ∩X)]{id ,ad}

which contains the associated data for all the identifiers in the intersection. Either way, the
server learns nothing about the triples in Ȳ that are outside the intersection (other than
their identifiers).

2.2 Fuzzy threshold PSI-AD

While a protocol for threshold PSI-AD is sufficient for the Apple PSI system, we would like
the system to satisfy one additional property. When the intersection cardinality is below
the threshold, it is desirable that the server have some uncertainty as to the exact size of
the intersection and its contents. The reason why this is needed is discussed in the technical
summary document [App21].

To do so, we allow the client to introduce synthetic matches so that the server is uncertain
which identifiers are in the intersection. We refer to this problem as fuzzy threshold PSI
with associated data or ftPSI-AD. The setup is as follows:

• As in tPSI-AD, The client has an ordered list Ȳ ∈ (U × ID ×D)m of m triples. The
server has a set of hash values X ⊆ U of size n. Both parties know the threshold
parameter t.

3

The Apple PSI system Apple Inc.

• In addition, the client has a small secret set S ⊆ id(Ȳ) of identifiers that it designates
as synthetic matches. The triples whose identifiers are in S will always appear to
intersect with X, but will not count towards the threshold, nor have any associated
data paired with them. We will explain the purpose of synthetic matches in a moment.

The ftPSI-AD problem is to design a protocol Π so that at the end of the protocol : (i) the
client only learns

∣∣X∣∣, and (ii) the server only learns Ȳid and

• if
∣∣∣id(Ȳ ∩X) r S

∣∣∣ ≤ t then the server learns id(Ȳ ∩X) ∪ S ⊆ ID,

• if
∣∣∣id(Ȳ ∩X)rS

∣∣∣ > t then the server learns Ȳ [id(Ȳ ∩X) r S]{id ,ad} ⊆ (ID×D) and

the set S ⊆ ID.

Note that when the set S of synthetics is empty, this functionality reduces to tPSI-AD from
the previous section.

Now, suppose the client designates up to k · t elements in id(Ȳ) as synthetics, for some
small constant k. Then, when the intersection cardinality is at most t, the server learns the
set of identifiers [id(Ȳ ∩ X) ∪ S]. Because the protocol reveals nothing else about S, the
server cannot tell which identifiers are in the intersection and which are synthetics. Thus,
when the intersection is small, the set S introduces some uncertainty as to the exact size of
the intersection as well as some uncertainty as to the set of identifiers in the intersection.
We refer to the technical summary document [App21] for a further discussion of the purpose
of synthetic matches and how the client selects the set S.

We note that there are protocols for tPSI-AD that fully hide the identifiers in the

intersection when
∣∣∣id(Ȳ ∩X)

∣∣∣ ≤ t. Examples include protocols derived from [HOS17, GN17,

ZC18, GS19, BDP20]. However, these protocols do not satisfy the rigid communication and
performance requirements in Section 2.3.

2.3 Protocol requirements and constraints

Due to the specific problem settings, there are rigid constraints on the protocol’s commu-
nication pattern and security requirements.

The required communication pattern. The protocol is only allowed to send the fol-
lowing messages:

• Setup. The server uses its set X to compute some public data, denoted pdata. The
same pdata is then sent to all clients in the world (as part of an OS software update).

The size of pdata can be proportional to the size of X, but must be independent of
the number of clients. During setup the server can generate and store a short secret
key, but no other state is stored on the server. Moreover, it should be possible for a
trusted third party who knows both X and pdata to certify that pdata was constructed
correctly.

• Client vouchers. Whenever the client receives a new triple tr := (y, id , ad) it
uses pdata to construct a short voucher Vtr, and sends Vtr to the server. No other
communication is allowed between the client and the server. The work to create Vtr

4

The Apple PSI system Apple Inc.

and the length of Vtr should be at most linear in the threshold (and at most linear in
the length of a hash value, the size of an identifier, and the length of the associated
data). Importantly, the client’s work to create Vtr and its length should be independent
of
∣∣X∣∣ and

∣∣Ȳ ∣∣. All vouchers should have the same length.

All client-side processing of a triple tr must be done as soon as the client receives
this triple. A protocol that delays the processing of client triples, so that triples are
processed as a batch, cannot be used. This is due to the logic for processing data on
the client. Moreover, if there is a gap between the time that the triple is received and
the time that the triple is processed by the client, then a device reset during the delay
period would cause the triple to never be processed.

• Processing at the server. The server uses its short secret key, generated during
setup, to process incoming vouchers from the client. No other state is required at the
server for this. When a voucher is first received at the server, the server processes it
and marks it as non-matching, if that voucher was computed from a non matching
hash value. Once every time period (say, once a week) the server processes all the
remaining vouchers, namely ones computed from real or synthetic matches, to reveal
the ftPSI-AD output based on all the data sent from the client so far.

• Client abort. If the client aborts the protocol, the server should be able to process
the set of vouchers it received prior to the abort and obtain the ftPSI-AD output from
the vouchers sent prior to the client abort.

• Updates. If needed, the server should have the option to push an updated pdata to
the client (as part of an OS software update), and the vouchers previously computed
by the client using the old pdata should be “compatible” with vouchers computed
using this new pdata. That is, vouchers pre- and post- update should jointly count
towards the threshold.

In addition, we note that the contents and the size of the set of synthetics S is not known
to the client at setup time. The set is constructed incrementally over time.

High level security requirements. We define the precise security model in Section 4.4.
Here we explain the security requirements at a high level.

• Privacy for the server: A malicious client should learn nothing about the server’s
dataset X ⊆ U other than its size. In particular, it is important that the client learn
nothing about the intersection size

∣∣id(Ȳ ∩X)
∣∣. Otherwise, the client can use that to

extract information about X by adding test items to its list Ȳ , and checking if the
intersection size changes.

• Privacy for the client: Let X be the server’s input from which pdata is derived. A
malicious server must learn nothing about the client’s Ȳ beyond the output of ftPSI-
AD with respect to this set X. This will be defined precisely in Section 4.4.

• The protocol should have no false positives: for a client triple (y, id , ad) ∈ Ȳ , if the
client is behaving honestly and y 6∈ X, then the server should learn nothing about y
or ad . This rules out some constructions that rely on Bloom filters.

5

The Apple PSI system Apple Inc.

• The protocol need not provide correct output against a malicious client. That is,
the protocol need not prevent a malicious client from causing the server to obtain an
incorrect ftPSI-AD output when the protocol terminates. The reason for this is that
a malicious client can always choose to hide some of its data from the PSI system in
order to cause an undercount of the intersection. Moreover, a malicious client that
attempts to cause an overcount of the intersection will be detected by mechanisms
outside of the cryptographic protocol.

Remark 3 (false negatives). In what follows we will slightly relax the correctness requirement
and allow the protocol to miss a small number of random real matches. That is, let X ′

be a random subset of X where
∣∣X ′∣∣ ≥ (1 − δ)

∣∣X∣∣ for some small δ > 0. We allow the
protocol to run with the server contributing X ′ rather than X as its input. Consequently,
the server will only learn the associated data for elements that match X ′, not X, when∣∣id(Ȳ ∩X ′)rS

∣∣ > t. This improves performance, and has little impact on the effectiveness
of the system since X is updated periodically and after each update a new random X ′ is
computed, as discussed in Section 5. If needed, these false negatives can be eliminated with
a tweak to the data structure used.

3 Building blocks

The protocols described in the next section make use of a number of cryptographic primi-
tives:

• (Enc,Dec) is a symmetric encryption scheme with key spaceK′. We will need (Enc,Dec)
to satisfy two security properties. First, we need the scheme to satisfy a standard se-
curity notion called IND$-CPA security (see, e.g., [Rog04, §3] for a definition). Second
we need the scheme to satisfy a weak form of robustness [ABN18, FLPQ13, FOR17] we
call random key robustness. This property says that if a message m is encrypted un-
der one random key k and then decrypted under another independent random key k′,
then decryption should fail with high probability. More precisely, for all efficient
adversaries A

Pr
[
m←$ A(); k, k′ ←$ K′; c←$ Enc(k,m) : Dec(k′, c) 6= reject

]
≤ negl. (1)

A symmetric encryption scheme that provides authenticated encryption [BN08] (mean-
ing that it is both IND$-CPA secure and has ciphertext integrity), satisfies both prop-
erties above. The implementation uses AES128-GCM with a random 96-bit nonce.

• E(Fp) is an elliptic curve of prime order q. Let G be a fixed generator of E(Fp).
We will need the Decision Diffie-Hellman (DDH) assumption to hold in E(Fp). The
implementation uses the curve NIST P256 with the generator G specified in the NIST
standard. We refer to [BS20, ch. 15] as a reference for these concepts.

• H : U → E(Fp)r {O} is a hash function that we will model as a random oracle. The
implementation uses a construction based on the evolving Hash to Elliptic Curves
standard in the Internet Engineering Task Force’s Crypto Forum Research Group’s
draft standard [FHSS+20].

6

The Apple PSI system Apple Inc.

• H ′ : E(Fp) → K′ is a secure key derivation function, namely, the uniform distri-
bution on E(Fp) is mapped to an almost uniform distribution on K′. One can use
HKDF [KE10].

• We will use Shamir secret sharing on an element of K′ to obtain shares in F2
Sh for

some field FSh. The field FSh needs to be sufficiently large so that when choosing t+1
random elements from FSh, the probability of a collision is low.

• A pseudorandom function (PRF) F : K′′×ID → F2
Sh×X ×R, where the sets X and

R are the domain and range of a detectable hash function, respectively, as defined in
Section 3.2 below. This PRF can be constructed from HMAC [KBC97].

3.1 The Diffie-Hellman random self reduction

Let G be a group of prime order q where the group operation is written additively. Fix a
generator G ∈ G. We say that a triple (L,U, V) in G3 is a Diffie-Hellman tuple, or DH
tuple, if there exists an α ∈ Fq such that L = α ·G and V = α · U .

Naor and Reingold [NR97] describe a partial random self reduction for DH tuples. Given
a triple (L, T, P) in G3 as input, the self reduction does:

• choose a random β, γ in Fq,

• compute Q← β · T + γ ·G and S ← β · P + γ · L,

• output (L,Q, S).

Naor and Reingold show that this transformation (L, T, P) → (L,Q, S) has the following
properties:

• if the provided triple (L, T, P) is a DH tuple, where L = α · G, then Q is a fresh
uniformly sampled element in G, and S = α ·Q.

• if the provided triple (L, T, P) is not a DH tuple, then (Q,S) is a fresh uniformly
sampled pair in G2.

These properties will be used in the next section.

3.2 Detectable hash functions

We will also need a new primitive which we call an (s, t)-detectable hash function, or (s, t)-
DHF. In what follows we say that a hash function DHF : K × X → R is weak t-wise
independent if the distribution{

k ←$ K, x1, . . . , xt ←$ X , output
(
DHF(k, x1), . . . ,DHF(k, xt)

)
∈ Rt

}
is identical to the uniform distribution on Rt. We use the “weak” qualifier to indicate that
the t-wise independence property need only hold for random elements in the domain X .

We say that a weak t-wise independent hash is s-detectable if there is an efficient de-
terministic detection algorithm D that is invoked as D(v), where v is a vector v =
(v1, . . . , vm) ∈ Rm. The algorithm outputs a set T̂ ⊆ [m] or outputs fail . The detection

7

The Apple PSI system Apple Inc.

algorithm D must satisfy the following property:

For a subset T ⊆ [m] define the following distribution DT on Rm:

• choose k uniformly in K;

• construct a vector v← (v1, . . . , vm) ∈ Rm as follows: for i = 1, . . . ,m:

if i ∈ T then xi ←$ X , vi ← DHF(k, xi), else vi ←$ R;

• output v.

We say that a weak t-wise independent DHF is s-detectable if for all boundedm
and all T ⊆ [m], where

∣∣T ∣∣ ≥ max(t + 1,m − s), the detection algorithm D
satisfies:

Pr
[

v←$ DT : D(v) = T
]
≥ 1− ε

for some small ε (e.g., ε less than 2−60).

In other words, when at least t+ 1 entries in v ∈ Rm are generated by DHF, and at most s
entries of v are random in R, the detection algorithm correctly identifies all the entries in v
that were generated using DHF. However, if only t entries in v are generated by DHF, then
by the weak t-wise independence property, nothing is revealed about which entries of v were
generated by DHF.

Definition 1. A hash function DHF : K × X → R is a (s, t)-DHF if (i) the function
DHF is weak t-wise independent and s-detectable, (ii) the set X is sufficiently large so that
choosing t + 1 random elements from X results in distinct elements with high probability,
and (iii) all the elements in R have equal length as binary strings.

A voucher in our protocol will contain an element in R, and therefore the set R should
be as small as possible. We will construct a suitable (s, t)-DHF in Section 4.3.

4 Threshold PSI-AD using the DH random self reduction

In this section describe an approach to ftPSI-AD that meets the requirements from Sec-
tion 2.3. We assume that all data exchanged between the client and the server is sent over
a secure and mutually authenticated channel.

4.1 A protocol for tPSI-AD

As a warm-up, we first describe a protocol for threshold PSI-AD (tPSI-AD). In the next
section we will extend the protocol to add support for synthetic matches and obtain a
protocol for ftPSI-AD. Throughout the section we use t for the threshold, and m for an
upper bound on the number of triples that the client will process.

Server setup. The server constructs the public data pdata by processing its set X ⊆ U
as follows:

• step 0: Process X to remove any duplicates. Let n :=
∣∣X∣∣.

• step 1: Construct a Cuckoo table T :

8

The Apple PSI system Apple Inc.

– Let n′ ← (1 + ε′) · n, where the choice of ε′ will be explained in a moment.

– Choose random hash functions h1, h2 : U → {1, . . . , n′} and a random hash
function H : U → E(Fp) r {O}. These hash functions may depend on

∣∣X∣∣, but
not on X.

– Insert the elements of X into a Cuckoo table T of size n′ = (1 + ε′) · n using the
two hash functions h1, h2 : U → {1, . . . , n′}, where there is at most one element
of X in each cell of T .

Elements in X that cannot be inserted into the Cuckoo table are dropped. The
value ε′ is set so that at most a small fraction of elements in X will be dropped
(see Remark 3). If needed, the fraction of dropped elements can be reduced by
using three hash functions h1, h2, h3. This has little impact on the protocol. See
also Remark 7 below regarding an improvement to the Cuckoo data structure.

– Caution: it is important to ensure that there are no collisions among the Cuckoo
hash functions h1, h2, namely, there is no y ∈ U such that h1(y) = h2(y). An easy
way to ensure that there are no collisions is to tweak the hash functions whenever
a collision occurs. That is, if h1(y) = h2(y) then define h2(y) ← h1(y) + 1. [if
h1(y) = h2(y) = n′ then set h2(y)← 1]

• step 2: The server chooses a random α 6= 0 in Fq and computes L ← αG ∈ E(Fp).
This α will be kept secret by the server.

• step 3: For i = 1 to n′ compute using the Cuckoo table T :

– if T [i] is not empty, set Pi ← α ·H(T [i]) ∈ E(Fp) r {O}, where T [i] ∈ X ⊆ U .

– if T [i] is empty, choose Pi at random from E(Fp) r {O}.
– Among the resulting n′ points, it is important that points that were generated

using the first bullet are indistinguishable from points that were generated using
the second bullet. In the proof of security we will use the Decision Diffie-Hellman
assumption to argue that this is the case.

• step 4: Set pdata := (L,P1, . . . , Pn′) along with a description of the hash functions
H,h1, h2. The description of each hash function is a random 128-bit domain separation
nonce chosen at random at the beginning of the Cuckoo table construction.

Client setup. The client performs the following steps:

• Obtain pdata. Ensure that L and P1, . . . , Pn′ are non-zero points in E(Fp) and are all
distinct. If not, pdata is rejected and the client aborts.

• Select fresh random keys:

– Choose a random secret key adkey ←$ K′ for the encryption scheme (Enc,Dec).

– Choose a random secret key fkey ←$ K′′ for the PRF F : K′′×ID → F2
Sh×X ×R.

– Initialize a threshold Shamir secret sharing for adkey , so that t+1 or more shares
are needed to reconstruct adkey .

This completes the description of the setup procedure.

9

The Apple PSI system Apple Inc.

Client generates a voucher for a triple (y, id , ad) ∈ U × ID ×D.

• step 1: compute
adct ←$ Enc

(
adkey , ad

)
.

That is, we encrypt ad using the key adkey . The system must ensure that all cipher-
texts adct are the same length.

• step 2: compute (x, z, x′, r′)← F (fkey , id) ∈ F2
Sh×X ×R. In this section we only use

the x output of F . We will need z, x′, r′ in the next section.

• step 3: generate a new threshold Shamir secret share sh ∈ F2
Sh of adkey , so that t+ 1

shares are needed to reconstruct adkey . The x-coordinate of sh is set to x ∈ FSh

computed in step 2.

Note: FSh needs to be large enough so that when choosing t + 1 pseudorandom x-
coordinates from FSh, the probability of a collision is small. The reason to use a
pseudorandom x-coordinate derived from id is to ensure that duplicate triples with
the same id always result in the same Shamir share sh.

• step 4: choose a random key rkey ←$ K′ and compute

rct ←$ Enc
(
rkey , (adct , sh)

)
.

That is, rct is an encryption of (adct , sh) using the key rkey .

• step 5: for j = 1, 2 do:

– step 5.1: compute w ← hj(y) ∈ {1, . . . , n′}
(recall that h1, h2 are the Cuckoo hash functions).

– step 5.2: choose random βj and γj in Fq and use Pw, L from pdata to compute:

Qj ← βj ·H(y) + γj ·G and Sj ← βj · Pw + γj · L.

Intuition: the client is applying the DH random self reduction from Section 3.1
to the triple (L,H(y), Pw). If y = T [w] then Pw = α · H(y) and then (Qj , Sj)
satisfies α ·Qj = Sj . Otherwise, (Qj , Sj) is a pair of random independent points
in E(Fp).

– step 5.3: set ct j ←$ Enc
(
H ′(Sj), rkey

)
.

That is, ct j is an encryption of rkey using the key H ′(Sj) ∈ K′.

• step 6: choose a random bit b in {1, 2} and set

voucher ← (id , Qb, ctb, Q3−b, ct3−b, rct).

Send this voucher to the server.

As we will see, if y is a match (i.e. y is in X), then exactly one of ct1 or ct2 will
be successfully decrypted on the server. We also note that the ciphertext rct , is the
longest element in the voucher; the other fields in the voucher are short.

10

The Apple PSI system Apple Inc.

The server processes the set of received vouchers. At any time, the server can pro-
cess the set of received vouchers to obtain the tPSI-AD output based on the data processed
so far by the client. Recall that α ∈ Fq is the server’s secret generated during server setup.

• step 0: initialize an empty set SHARES and an empty list IDLIST.

• step 1: for each received voucher (id , Q1, ct1, Q2, ct2, rct) do:

– append id to the list IDLIST.

– for j = 1, 2 compute

∗ set Ŝj ← α ·Qj ∈ E(Fp)

∗ set rkeyj ← Dec(H ′(Ŝj), ct j);
if decryption fails then set goodkeyj ← false and skip the next step.

∗ set (adct j , shj)← Dec(rkeyj , rct);
if decryption fails then set goodkeyj ← false, otherwise set goodkeyj ← true.

– if goodkey1 = goodkey2 = false then this is a non-match and the voucher can be
ignored.

– if for b ∈ {1, 2} we have goodkeyb = true but goodkey3−b = false then add the
triple (id , adctb, shb) to the set SHARES. This is a match. Recall that shb is a
Shamir share of adkey .

– if goodkey1 = goodkey2 = true, namely both ct1 and ct2 were successfully de-
crypted, then with high probability this client voucher is invalid and can be
ignored.

• Main point: if the voucher corresponds to a triple (y, id , ad) where y is a match (i.e.,
y is in X) then exactly one of ct1 or ct2 will decrypt correctly to rkey , from which the
server obtains the pair (adct , sh) that the client computed in Steps 1 and 3. For all
other ciphertexts ct j , the point Ŝj = α ·Qj that the server computes is independent
of the point Sj used by the client in Step 5.3, and then decryption of ct j should fail
by the random key robustness property of (Enc,Dec).

• step 2: let t′ be the number of distinct Shamir shares in the set SHARES. If the client
is behaving honestly, then t′ should be equal to the size of id(Ȳ ∩X).

– if t′ ≤ t then let OUTSET be the set of identifiers in SHARES.

– if t′ > t then do:

∗ use (t+ 1) distinct Shamir shares in SHARES to reconstruct adkey ∈ K′.
∗ initialize an empty set OUTSET.

∗ for each triple (id , adct , sh) in SHARES use adkey to decrypt the ciphertext
adct to obtain

ad ← Dec(adkey , adct).

If decryption fails, then the corresponding voucher is invalid. If decryption
succeeds, add the pair (id , ad) to the set OUTSET.

– output the list IDLIST and the set OUTSET.

This completes the description of the protocol.

11

The Apple PSI system Apple Inc.

Correctness. Let us briefly argue that when the client and the server honestly follow the
protocol, the server learns the required tPSI-AD output.

Theorem 1 (correctness). Suppose that the client and the server honestly follow the pro-
tocol, and that (i) H ′ : E(Fp) → K′ is a secure key derivation function, (ii) (Enc,Dec) is
random key robust as defined in (1) on page 6, and (iii) F is a secure PRF. Then the server
learns the required tPSI-AD output with high probability.

Proof Sketch. First, by construction, the output IDLIST is equal to Ȳid . Second, let us show
that the server learns the set id(Ȳ ∩X), as required in tPSI-AD.

Let (y, id , ad) ∈ Ȳ be a client triple, and let (id , Q1, ct1, Q2, ct2, rct) be the corre-
sponding voucher sent to the server for this triple.

Suppose that id is not in id(Ȳ ∩ X). We know that with high probability, the point
αH(y) ∈ E(Fp) is not equal to either points Ph1(y) or Ph2(y) in pdata. In other words,
neither (L,H(y), Ph1(y)) nor (L,H(y), Ph2(y)) are Diffie-Hellman tuples. Now, for j = 1, 2,
the client creates the ciphertext ct j using a key computed as H ′(Sj). The server, however,
attempts to decrypt ct j using the key H ′(αQj). We know that Qj and Sj are two random
independent points in E(Fp), by the properties of the Diffie-Hellman random self reduction
from Section 3.1. Therefore, the keys H ′(Sj) and H ′(αQj) are sampled (almost) uniformly
and independently in K′. Hence the random key robustness property of (Enc,Dec) implies
that, with high probability, the server will fail to decrypt both ct1 and ct2.

For id that is in id(Ȳ ∩ X), we know that exactly one of the tuples (L,H(y), Ph1(y))
or (L,H(y), Ph2(y)) is a Diffie-Hellman tuple. Here we are using the fact that for all y, the
points Ph1(y) and Ph2(y) in pdata are distinct points in E(Fp), and that the Cuckoo hash
functions h1, h2 are collision free so that h1(y) 6= h2(y). Therefore, the server succeeds in
decrypting exactly one of the ciphertexts ct1 or ct2 in the voucher (id , Q1, ct1, Q2, ct2, rct),
and learns rkey for that voucher. It will fail to decrypt the other ciphertext for the same
reason as in the previous paragraph.

These two observations show that when the protocol terminates, the server obtains the
the set of identifiers id(Ȳ ∩X), as required in tPSI-AD. This is the set of identifiers from
vouchers for which the server succeeds in decrypting one of ct1 or ct2.

Next, suppose that id(Ȳ ∩ X) contains more than t elements. Then the server can
reconstruct adkey . To see why, observe that as we explained above, the server learns rkey
for all vouchers (id , Q1, ct1, Q2, ct2, rct) where id is in id(Ȳ ∩X). This rkey can be used
to decrypt rct from the voucher to reveal the pair (adct , sh), where the second element
is a Shamir share of adkey . Because the field FSh is sufficiently large, and F is a secure
PRF, this reveals more than t distinct Shamir shares of adkey with high probability. From
these, the server can reconstruct adkey . Once the server has adkey it can decrypt all the
ciphertexts adct that correspond to identifiers in id(Ȳ ∩X). This reveals Ȳ [id(Ȳ ∩X)]{id ,ad}
as required.

Remarks. Before we continue, we first make a few remarks about the protocol.

Remark 4 (No client output). The client should learn nothing about the server’s output
from the protocol. Otherwise, the client could use the server’s output to compromise the
server’s dataset X, by adding test items to its data Ȳ , and checking if

∣∣id(Ȳ ∩X)
∣∣ changes.

In particular, all communications from the server to the client should be independent of the
server’s output from the protocol.

12

The Apple PSI system Apple Inc.

Remark 5 (Validating the set X). Recall that during setup, the server builds a cuckoo table
for the provided set of values X ⊆ U . It fills the empty slots in the cuckoo table with random
points in E(Fp). A malicious server could try to choose those entries non-randomly so as
to match spurious hash values in U , thereby secretly increasing the size of the set X. This
is called overfitting in [PRTY20, GPR+21]. We treat this the same way as one would treat
a malicious server who is attempting to modify the provided set X. In principle, one could
mitigate tampering with the set X by relying on a third party, who knows both pdata and
X, to certify that pdata is constructed correctly for X. The Apple PSI system addresses
this issue differently, by using measures implemented outside of the cryptographic protocol.

Remark 6 (Choosing Shamir shares). To reduce the size of the vouchers, and thus bandwidth
used by the client, the client can use a subset of FSh for the x-coordinate in Shamir Secret
Sharing. The only requirement is that when choosing t + 1 pseudorandom elements from
the subset, the probability of a collision is sufficiently small. If we limit the size of the set
from which we draw the x-coordinates in real vouchers, we must do the same for synthetics
in the protocol described in the next section.

Remark 7 (An improvement to the Cuckoo data structure). The work of [PRTY20, GPR+21]
proposes an improvement to the Cuckoo data structure that enables us to further shrink
the voucher by including only a single point from E(Fp) in the voucher.

4.2 A protocol for ftPSI-AD

In this section we extend the tPSI-AD protocol from the previous section to add support for
synthetic matches. Recall that synthetic matches were discussed in Section 2.2. As before,
we use t for the threshold, and m for the maximum number of triples that the client will
process. We use smax to denote an upper bound on the size of the set S, namely an upper
bound on the number of synthetic matches.

Server setup. The server setup is identical to the server setup in the previous section.

Client setup. The client performs the following steps:

• Obtain pdata. Ensure that L and P1, . . . , Pn′ are non-zero points in E(Fp) and are all
distinct. If not, pdata is rejected and the client aborts.

• Select fresh random keys:

– Let DHF : K × X → R be a (smax, t)-DHF, namely a weak t-wise independent
smax-detectable hash function. Recall that t is the ftPSI-AD threshold and smax is
an upper bound on the size of the set S. Choose a random secret key hkey ←$ K.

– Choose a random secret key adkey ←$ K′ for the encryption scheme (Enc,Dec).

– Choose a random secret key fkey ←$ K′′ for the PRF F : K′′×ID → F2
Sh×X ×R.

– Initialize a threshold Shamir secret sharing for adkey , so that t+1 or more shares
are needed to reconstruct adkey .

This completes the description of the setup procedure.

13

The Apple PSI system Apple Inc.

Client generates a voucher for a triple (y, id , ad) ∈ U×ID×D. There are two cases:
either id ∈ S or id 6∈ S. We describe each in turn.

Case 1: id 6∈ S (i.e., the triple is not synthetic)

• step 1: compute
adct ←$ Enc

(
adkey , ad

)
.

That is, we encrypt ad using the key adkey . The system must ensure that all cipher-
texts adct are the same length.

• step 2: compute (x, z, x′, r′)← F (fkey , id) ∈ F2
Sh ×X ×R and

r ← DHF(hkey , x′) ∈ R.

We use x and r in the next two steps, but will not use z and r′ in this part.

Note: the domain X of the DHF needs to be large enough so that when choosing t+1
pseudorandom elements in the domain, the probability of a collision is small.

• step 3: generate a new threshold Shamir secret share sh ∈ F2
Sh of adkey , so that t+ 1

shares are needed to reconstruct adkey . The x-coordinate of sh is set to x ∈ FSh

computed in step 2.

Note: FSh needs to be large enough so that when choosing t + 1 pseudorandom x-
coordinates from FSh, the probability of a collision is small.

• step 4: choose a random key rkey ←$ K′ and compute

rct ←$ Enc
(
rkey , (r, adct , sh)

)
.

That is, rct is an encryption of (r, adct , sh) using the key rkey . This is similar to rct
in the tPSI-AD protocol with the primary difference being the inclusion of r.

• step 5: for j = 1, 2 do:

– step 5.1: compute w ← hj(y) ∈ {1, . . . , n′}
(recall that h1, h2 are the Cuckoo hash functions).

– step 5.2: choose random βj and γj in Fq and use Pw, L from pdata to compute:

Qj ← βj ·H(y) + γj ·G and Sj ← βj · Pw + γj · L.

Intuition: if y = T [w] then Pw = α ·H(y) and then (Qj , Sj) satisfies α ·Qj = Sj .
Otherwise, (Qj , Sj) is a pair of random independent points in E(Fp).

– step 5.3: set ct j ←$ Enc
(
H ′(Sj), rkey

)
.

That is, ct j is an encryption of rkey using the key H ′(Sj) ∈ K′.

• step 6: choose a random bit b in {1, 2} and set

voucher ← (id , Qb, ctb, Q3−b, ct3−b, rct).

Send this voucher to the server. If y is a match (i.e. y is in X), then exactly one of
ct1 or ct2 will be successfully decrypted on the server.

14

The Apple PSI system Apple Inc.

Case 2: id ∈ S (i.e., the triple (y, id , ad) is designated as synthetic)

• step 1: choose a random key ckey in K′ and compute

adct ←$ Enc(ckey , 000 . . . 00).

That is, encrypt a sequence of 0’s using the key ckey in K′. All adct , real and synthetic,
should be the same length and indistinguishable. As we will see, the server will never
decrypt this adct .

• step 2: compute (x, z, x′, r)← F (fkey , id) ∈ F2
Sh × X ×R. We use x, z, r in the next

two steps, but will not use x′ in this part.

• step 3: set dummy ← (x, z) ∈ F2
Sh, using the x, z computed in step 2 (a dummy

Shamir secret share),

• step 4: choose a random key rkey ←$ K′ and compute rct ←$ Enc
(
rkey , (r, adct , dummy)

)
using the pseudorandom r ∈ R computed in step 2.

• step 5: do:

– step 5.1: choose a random β in Fq; set Q1 ← β ·G and S1 ← β · L;

– step 5.2: choose Q2 and S2 independently at random in E(Fp);

intuition: (Q1, S1) satisfies S1 = α ·Q1, but (Q2, S2) is a random pair of points.

– step 5.3: set ct1 ←$ Enc
(
H ′(S1), rkey

)
and ct2 ←$ Enc

(
H ′(S2), rkey

)
.

Here ct1 and ct2 are an encryption of rkey using the keys H ′(S1) and H ′(S2)
respectively.

• step 6: choose a random bit b in {1, 2} and set

voucher ← (id , Qb, ctb, Q3−b, ct3−b, rct).

Send this voucher to the server.

Intuition: exactly one of ct1 or ct2 will be successfully decrypted on the server, as with
a real match. As long the intersection size is t or less, the resulting (rkey , r, adct , dummy)
will be indistinguishable from a real match.

The server processes the set of received vouchers. At any time, the server can
process the set of received vouchers to obtain the ftPSI-AD output based on the data
processed so far by the client.

• step 0: initialize an empty set SHARES and an empty list IDLIST.

• step 1: for each received voucher (id , Q1, ct1, Q2, ct2, rct) do:

– append id to the list IDLIST.

– for j = 1, 2 compute

∗ set Ŝj ← α ·Qj ∈ E(Fp)

15

The Apple PSI system Apple Inc.

∗ set rkeyj ← Dec(H ′(Ŝj), ct j);
if decryption fails then set goodkeyj ← false and skip the next step.

∗ set (rj , adct j , shj)← Dec(rkeyj , rct);
if decryption fails then set goodkeyj ← false, otherwise set goodkeyj ← true.

– if goodkey1 = goodkey2 = false then this is a non-match and the voucher can be
ignored.

– if for b ∈ {1, 2} we have goodkeyb = true but goodkey3−b = false then

add the tuple (id , adctb, shb, rb) to the set SHARES.

This is a match. Recall that shb is a Shamir share of adkey , and rb is in the
range R of the detectable hash function.

– if goodkey1 = goodkey2 = true then with high probability the client voucher is
invalid and can be ignored.

• step 2: let t′ be the number of distinct Shamir shares in the set SHARES. If the
client is behaving honestly, then t′ should be equal to

∣∣id(Ȳ ∩X) ∪ S
∣∣. Some of the

Shamir shares in SHARES are “real”, obtained from a real match, while others are
“dummy” due to a synthetic match. The server does not know which is which. When
the intersection size is above the threshold, the detectable hash function will be used
to identify the real Shamir shares and filter out the dummy ones.

– let OUTSET be the set of identifiers in SHARES.
This set will be equal to id(Ȳ ∩X) ∪ S ⊆ ID.

– if t′ ≤ t then output IDLIST and OUTSET and stop.

– otherwise, t′ > t. Let RLIST ∈ R≤t′ be a list whose elements are all the distinct
detectable hash function values in SHARES (i.e., a list containing the last element
from every tuple in SHARES, while eliminating duplicates).

– run the detection algorithm of the (smax, t)-DHF giving it the list RLIST ∈ R≤t′

as input.

– if the detection algorithm outputs fail then with high probability there are not
enough real Shamir shares in SHARES, namely

∣∣id(Ȳ ∩ X) r S
∣∣ ≤ t; output

IDLIST and OUTSET and stop.

– otherwise, the detection algorithm outputs a set T̂ ⊆ [t′] of at least t+ 1 indices
into RLIST. Let RLIST[T̂] ⊆ R be the set of DHF values in RLIST at positions
indicated by T̂ .

– let SHARES′ be the subset of SHARES that contains all tuples whose last coordi-
nate is in RLIST[T̂]. Then SHARES′ contains at least t+1 distinct “real” Shamir
shares.

– use (t+ 1) distinct Shamir shares in SHARES′ to reconstruct an adkey ∈ K′.
– initialize an empty set OUTSET.

– for each tuple (id , adct , sh, r) in SHARES′ use adkey to decrypt the ciphertext
adct to obtain

ad ← Dec(adkey , adct).

If decryption fails, then the corresponding voucher is invalid. If decryption suc-
ceeds, add the pair (id , ad) to the set OUTSET.

16

The Apple PSI system Apple Inc.

– Let S be the of identifiers in SHARES that are not in SHARES′.

– output the list IDLIST and the sets OUTSET and S.

This completes the description of the protocol. If the algorithm outputs a set OUTSET of
pairs (id , ad), but the set contains fewer than t + 1 pairs, then either the DHF detection
algorithm failed (low probability) or the client sent invalid vouchers.

Correctness. The following theorem shows that when the client and the server honestly
follow the protocol, the server learns the required ftPSI-AD output.

Theorem 2 (correctness). Suppose that the client and the server honestly follow the pro-
tocol, and that (i) H ′ : E(Fp) → K′ is a secure key derivation function, (ii) (Enc,Dec) is
random key robust as defined in (1) on page 6, (iii) F is a secure PRF, and (iv) DHF is an
(smax, t)-DHF. Then the server learns the required ftPSI-AD output with high probability.

The proof is essentially the same as the proof of Theorem 1. The main difference is that

when
∣∣∣id(Ȳ ∩ X) r S

∣∣∣ ≤ t, the server should output the list of identifiers id(Ȳ ∩ X) ∪ S.

Indeed, in this case, by construction, the identifiers in the set S are indistinguishable from
the identifiers in id(Ȳ ∩X), and therefore will be included in the list of identifiers OUTSET

that the server outputs, as required. Moreover, when
∣∣∣id(Ȳ ∩X) r S

∣∣∣ > t and
∣∣S∣∣ ≤ smax,

the detection algorithm of the DHF will identify the real Shamir shares in SHARES, and
consequently the server will output the required OUTSET = Ȳ [id(Ȳ ∩X) r S]{id ,ad}.

Remarks. Remarks 4-7 from the previous section apply to this protocol as well. In
addition, we make the following remark about maliciously injected synthetics.

Remark 8 (Synthetic injection). Synthetic matches added by the client provide a fuzzy
intersection size to the server when the intersection size is below the threshold. However,
consider a client that deliberately chooses the set S of synthetics to be larger than smax,
thereby violating the upper bound on S. Then the DHF detection algorithm may fail even
when the number of “real” Shamir shares obtained by the server is above the threshold.
The server will then obtain an incorrect ftPSI-AD output. As explained at the beginning
of the document, the system is not required to ensure correctness against a misbehaving
client because there are many ways in which a malicious client can refuse to participate.
Nevertheless, we note that the server can detect an excess number of synthetics by the
client and flag this type of failure. Moreover, for the DHF described in the next section, it
is possible to locate the real Shamir shares even if there are more than smax dummy shares,
albeit using a different and more costly detection algorithm. See Remark 9.

4.3 Constructing a detectable hash function

To complete the description of the protocol we need an s-detectable t-wise independent
hash function DHF : K ×X → R, or an (s, t)-DHF. Recall that

• s is an upper bound on the size of the set S, and
• t+ 1 is the threshold number of matches before the server learns any associated data.

For the rest of this section let ` be a 64-bit prime.

17

The Apple PSI system Apple Inc.

Construction. The function DHF : K ×X → R is defined as follows:

• K := Fs×t
` , X := F`, R := Fs+1

` .

• We treat a key k ∈ K as a sequence of s polynomials p1, . . . , ps ∈ F`[X] each of degree
at most t− 1. Each row of the matrix k ∈ K is one polynomial.

• For k ∈ K and x0 ∈ X define

DHF(k, x0) :=
(
x0, p1(x0), . . . , ps(x0)

)
∈ Fs+1

`

We will treat the output DHF(k, x0) as a column vector in Fs+1
` .

A standard argument shows that the function DHF is weak t-wise independent: for ran-
dom k ←$ K and random x1, . . . , xt ←$ F`, the distribution

(
DHF(k, x1), . . . ,DHF(k, xt)

)
is

uniform in Rt.

The detection algorithm. The detection algorithm is given a matrix of m columns,
where each column is an element of R = Fs+1

` . It needs to detect those columns that are an
output of the DHF, assuming there are at least max(t+1,m−s) such columns. Recall that
this means that there are at least t+ 1 DHF columns and at most s random columns. This
problem is related to decoding the interleaved Reed-Solomon code under random noise. Our
decoder uses a technique first described by Coppersmith and Sudan [CS03].

• step 1: expand each of the m given column vectors r← (x0, r1, . . . , rs) ∈ Fs+1
` into a

column vector r′ ∈ Fs+t
` by setting

r′ ← (1, x0, x
2
0, . . . , x

t−1
0 , r1, . . . , rs) ∈ Fs+t

` .

• step 2: let M ∈ F(s+t)×m
` be the resulting matrix after expansion. Every row of M

contains at least t+1 evaluations of some polynomial f of degree at most t−1. Hence,
the t+ 1 correct DHF columns of M must be linearly dependent.

• step 3: if dim(kernel(M)) = 0 then output fail and stop (here kernel(M) is the right
kernel of M); otherwise:

– let w ∈ Fm
` be a vector in the kernel of M , namely M ·w = 0.

– let Z ⊆ [m] be the set of indices where w is non-zero.

– let M [Z] ∈ F(s+t)×|Z|
` be the sub-matrix of M restricted to the columns in Z.

– output the set of indices Ẑ ⊆ [m] where i ∈ Ẑ iff column number i of M is in
the linear span of the columns in M [Z]. Note that Ẑ is a superset of Z.

This completes the description of the detection algorithm.

To show that the detection algorithm works correctly, consider the case where M con-
tains at least t+1 DHF columns. Let M̂ be the sub-matrix of M containing all the expanded
random columns and exactly t of the expanded DHF columns. This is a matrix contain-
ing at most s + t columns and exactly s + t rows. Moreover, the top t rows are linearly
independent, and the bottom s rows are truly random. The columns of such a matrix are

18

The Apple PSI system Apple Inc.

linearly independent with probability about 1− (1/`), assuming `� s+ t. The remaining
columns of M are in the linear span of the t DHF columns of M̂ . Therefore, the vector w
can only be non-zero at positions that correspond to DHF columns. Moreover, with high
probability, these columns will span the linear space of DHF columns. Hence, with high
probability, the algorithm outputs exactly the indices of the columns in M that are DHF
columns, as required.

Remark 9. The set S of synthetics grows in size over time. In the unlikely event that its size
exceeds s, so that we end up with more than s synthetics, we can use an extended detection
procedure that follows the method of Coppersmith and Sudan [CS03]. This method applies
when the number of DHF columns is at least t+ d, for a suitable choice of d ≥ 1.

4.4 Security

We now turn to analyzing the security of the protocol from Section 4.2. We show that the
scheme provides the following security properties:

• Privacy for the server: informally, a malicious client learns
∣∣X∣∣, but nothing else

about the server’s dataset X. The proof relies on the Decision Diffie-Hellman (DDH)
assumption in E(Fp) where H : U → E(Fp) r {O} is modeled as a random oracle.
Recall that the server is not guaranteed to obtain the correct ftPSI-AD output, and
this is fine as discussed in Section 2.3. Indeed, a malicious client can withhold elements
from its input Ȳ , or report fictitious matches, or even choose not to participate in the
first place.

• Privacy for the client: informally, a malicious server who misbehaves learns nothing
about the client’s dataset, beyond the required output of the ftPSI-AD functionality.

In this section we define these properties more precisely and sketch the security proofs.
Generally speaking, there are two approaches to defining security for a cryptographic pro-
tocol:

• A simulation based definition: This style of definition makes it possible to rigor-
ously state the two informal requirements above. Moreover, if one follows a universal
composability (UC) framework [Can00] then it is possible to deduce certain security
properties when the protocol is composed, or runs concurrently, with other UC pro-
tocols as part of a larger system. We refer to [Lin16] for a survey of this definition
style.

• A game based definition: This style of definition shows very concretely that the ad-
versary cannot mount certain attacks. The resulting security statements can be used
to set the security parameter to ensure real world security. However, for a complex
cryptographic task, one has to separately justify why the security games capture the
desired security properties. We refer to [BR06] for a detailed explanation of this
definition style.

In some cases it is possible to prove that a game based definition is equivalent to a simulation
based definition, after which one typically only uses the game based definition. In other
cases, however, establishing equivalence may be more difficult, in which case one might opt
to use a simulation based definition.

19

The Apple PSI system Apple Inc.

In this section we give a simulation based definition to formalize the two informal prop-
erties listed at the beginning of the section. We then state the security theorems in terms of
these definitions. To keep the discussion accessible, we will not use a formal logical frame-
work to give the definition, but instead write the definition in plain english. Future work
can translate the text into a logical framework suitable for a mechanized UC proof system
such as EasyUC [CSV19].

For readers who are more comfortable with game based definitions, we point to an
excellent security analysis by Bellare [Bel21] that provides a game based proof of security
for the core tPSI-AD protocol in Section 4.1. We are fortunate to have two types of analysis
for the protocol. Both analyses reach the same conclusions.

In what follows we adapt a simplified universal composability (UC) framework due to
Canetti, Cohen, and Lindel [CCL15]. We give a high level description of the framework and
refer to [CCL15] for the low level details. Because we are only concerned with privacy of
the inputs, we slightly modify the framework to remove the correctness guarantee for the
outputs. One complication is that our security analysis requires a programmable random
oracle, and this raises a number of definitional challenges in the UC framework, as discussed
in [CJS14, CDG+18]. We refer to [Sho20, §1.2] for a recent discussion of the implications
of these issues and their impact on composability. We model the random oracle as done
in [Sho20] and in several other papers. We are primarily using this setup to analyze the
standalone protocol.

The ideal functionality. The first component of a simulation based definition is an ideal
functionality F . This F defines what each party in the system is meant to learn when the
protocol completes. Figure 1 gives the ideal functionality for fuzzy threshold private set
intersection with associated data (ftPSI-AD). Note that we deliberately ignore the fact that
a small number of elements from X may be dropped from the server’s input as discussed in
Remark 3.

The ideal world/real world paradigm. A simulation based definition for a protocol Π
defines two worlds: a real world and an ideal world.

• In the real world, honest parties follow the specified protocol Π and interact with
corrupt parties who are controlled by an adversary A.

• In the ideal world, an adversary called a simulator, denoted by Sim, interacts with
the ideal functionality, and controls the same corrupt parties as in the real world.
The ideal world is set up to ensure that Sim learns nothing beyond what the ideal
functionality reveals to the corrupt parties.

The protocol Π is said to be a secure emulation of the ideal functionality if the ideal world
is “indistinguishable” from the real world. This implies that all the security properties
that hold in the ideal world must also hold in the real world. In particular, the real world
adversary can learn nothing beyond what is revealed by the ideal functionality.

To make this indistinguishability concept precise we introduce yet another adversary
called the environment, denoted by Z. The environment interacts with adversary A in
the real world, and interacts with adversary Sim in the ideal world. Its goal is to distinguish
these two interactions. As we will see, if Z cannot tell which world it is in, then we say

20

The Apple PSI system Apple Inc.

Parameters known to all parties:
• two parties: server and client,
• B is the maximum set size for the server and client,
• t is the threshold,
• smax is the maximum size of the set S of synthetics,
• all associated data values ad in D have the same public length.

The functionality F :

• Wait for input X = {x1, x2, . . .} from the server;
abort if the server is corrupt and

∣∣X∣∣ > B.

• Send
∣∣X∣∣ to the client; abort if the client is corrupt and aborts.

• Wait for input Ȳ ∈ (U × ID × D)m and S ⊆ id(Ȳ) from the client;
abort if the client is corrupt and (m > B or

∣∣S∣∣ > smax).

• Send Ȳid to the server.

• If
∣∣id(Ȳ ∩X) r S

∣∣ > t:
send Ȳ [id(Ȳ ∩X) r S]{id ,ad} and S to the server,

otherwise:
send id(Ȳ ∩X) ∪ S to the server.

Figure 1: The ideal functionality F for ftPSI-AD

that the ideal world and the real world are indistinguishable. We then say that protocol Π
is a secure emulation of the ideal functionality. We note that in the definition given below,
the adversary A is working together with Z to help Z distinguish the ideal world from the
real world, while the simulator Sim is trying to make the two worlds look the same.

Let us define the parties at work in the real and ideal worlds in more detail, as applied
to our settings. In our description we consider a situation where the client is honest and the
server is malicious. Figure 3 shows the parties at work in this case and how they interact.
The symmetric situation, where the server is honest and the client is malicious, is defined
analogously and shown in Figure 4. For context, Figure 2 gives a schematic of the protocol Π
for ftPSI-AD from Section 4.2.

• The parties at work in the real world (honest client and malicious server, Figure 3a):

– CH
real: an honest real world client. CH

real is given its input by the environment Z,
and honestly follows the protocol Π by sending messages to the malicious server.
In addition, CH

real can query the random oracle H.

– AH
s : a real world server adversary. The adversary interacts with CH

real and with
the environment Z by sending messages to and receiving messages from both
parties. In addition, AH

s can query the random oracle H.

– Z: the environment. Z provides CH
real with its input and interacts with AH

s by
sending messages to AH

s and receiving messages from AH
s . Eventually Z outputs

0 or 1. Note that Z can query the random oracle H by asking AH
s to issue the

query on its behalf and send back the response.

21

The Apple PSI system Apple Inc.

Parameters known to all parties:
• B is the maximum set size for the server and client,
• t is the threshold,
• smax is the maximum size of the set S of synthetics.

inputs: the server S has X ⊆ U where
∣∣X∣∣ ≤ B,

the client C has Ȳ ∈ (U × ID ×D)m and S ⊆ id(Ȳ),
where m ≤ B and

∣∣S∣∣ ≤ smax.

• server → client: The server moves first by preparing pdata ← (L,P1, . . . , Pn′) de-
scribed in Step 4 of the server setup procedure, and sends pdata to the client.

• client → server: the client responds by sending m vouchers back to the server, as
described in the voucher generation procedure.

• server output: the server outputs Ȳid and either (Ȳ [id(Ȳ ∩X) r S]{id ,ad} and S) or

id(Ȳ ∩X) ∪ S, as described in the voucher processing procedure.

Figure 2: A schematic of protocol Π for ftPSI-AD

Both CH
real and AH

s have access to the same random oracle H. (Technically, H is made
available to them as a so called ideal functionality.)

• The parties at work in the ideal world (honest client and malicious server, Figure 3b):

– Cideal: an honest ideal world client. The client is given its input by the environ-
ment Z, and simply forwards its input to the ideal functionality F .

– Sims: a server simulator. This Sims sends some set X to the ideal functionality
F and receives back its output from F . Sims also interacts with Z. Its goal is
to make its interaction with Z look the same as Z’s interaction with AH

s in the
real world.

– F : the ideal functionality. It accepts inputs from Cideal and Sims, and sends the
resulting server output to Sims.

– Z: the environment. Z sends an input to Cideal and interacts with Sims as in
the real world. Eventually Z outputs 0 or 1. Z can query the random oracle H
by sending the query to Sims as it would in the real world.

In the real world execution the adversary AH
s also controls the order in which transmitted

messages are delivered to parties. However, the communication pattern in the ftPSI-AD
protocol Π is sufficiently simple that this power does not help the adversary. Usually Z is
also given the output of the honest parties, but since we do not require output correctness,
we do not include that here.

It should be clear that the ideal world simulators Sims and Simc, shown in Figures 3
and 4, learn nothing beyond what is revealed by the ideal functionality. Therefore, if the
environment Z cannot distinguish between the ideal and real worlds, then the same must
hold for the real world adversaries As and Ac, respectively. We use this framework to define

22

The Apple PSI system Apple Inc.

CH
real AH

s Z
pdata

vouchers

client input: Ȳ , S

0/1

(a) The real world with an honest client Creal and a malicious server AH
s

Cideal F Sims Z
XȲ , S

server
output

client input: Ȳ , S

0/1

(b) The ideal world with an honest client Cideal and simulator Sims

Figure 3: Communication in the ideal and real worlds: honest client, malicious server

SHreal AH
c Zpdata

server input: X

0/1

(a) The real world with an honest server Sreal and a malicious client AH
c

Sideal FX Simc

∣∣X∣∣
Z

server input: X

0/1

(b) The ideal world with an honest server Sideal and simulator Simc

Figure 4: Communication in the ideal and real worlds: honest server, malicious client

23

The Apple PSI system Apple Inc.

and prove privacy for an honest server against a malicious client, and privacy for an honest
client against a malicious server.

4.4.1 Privacy for the server’s dataset X against a malicious client

First, let’s show that a malicious client AH
c that interacts with an honest server with in-

put X, learns nothing about X other than its size.

For an adversary AH
c , a simulator Simc, and an environment Z, define the following two

random variables:

• realΠ,AH
c ,Z is the random variable defined as the output of Z in a real world execution

after interacting with the malicious client AH
c as in Figure 4a.

• idealF ,Simc,Z is the random variable defined as the output of Z in an ideal world
execution after interacting with the simulator Simc as in Figure 4b.

Definition 2. We say that a protocol Π for F is server private if for every efficient adver-
sary Ac, there exists an efficient adversary Simc, such that for every efficient environment Z,∣∣∣Pr

[
realΠ,AH

c ,Z = 1
]
− Pr

[
idealF ,Simc,Z = 1

]∣∣∣ ≤ ε
for some negligible ε.

The terms “efficient” and “negligible” are usually interpreted asymptotically with re-
spect to a security parameter. Canetti [Can00, Def. 16] suggests a way to interpret these
terms as concrete values, but we will not do that here.

Theorem 3. Protocol Π in Figure 2 is server private, assuming H : U → E(Fp) r {O} is
modeled as a random oracle, and Decision Diffie-Hellman (DDH) holds in E(Fp).

Proof Sketch. Let AH
c be an efficient adversary as in Figure 4a. Let us define the following

adversary Simc that interacts with an external environment Z as in Figure 4b. Adversary
Simc works as follows:

1. Simc runs adversary AH
c as follows:

• When Simc receives a message from Z it forwards the message to AH
c . When

Simc receives a message from AH
c intended for Z it forwards the message to Z.

If Z or AH
c abort then so does Simc.

• Simc emulates a random oracle H : U → E(Fp) r {O} for AH
c . When AH

c

queries H at a point x ∈ U , adversary Simc responds consistently: it samples
R←$ E(Fp)r{O} and sends R to AH

c . Consistently means that if AH
c issues the

same query H(x) again, then Simc responds with the same R as before.

2. If Z does not abort then eventually Simc receives from the functionality F the cardi-
nality n of the honest server’s set X.

3. Simc sets n′ ← (1+ε′)·n and chooses n′+1 random points L,P1, . . . , Pn′ in E(Fp)r{O}.
It also chooses random nonces to define the hash functions h1, h2 : U → [n′].

24

The Apple PSI system Apple Inc.

4. Simc sends pdata← (L,P1, . . . , Pn′) and the nonces to AH
c .

This completes the description of Simc.

We claim that Pr
[
realΠ,AH

c ,Z = 1
]
, the probability that Z outputs 1 in the ideal world,

is close to Pr
[
idealF ,Simc,Z = 1

]
. To see why, we argue that the input that Simc gives to

AH
c in Step 4 is indistinguishable from the input that AH

c receives from SHreal in a real world
execution. It follows that the resulting messages to Z in both worlds are indistinguishable,
and therefore Z will behave the same in both worlds.

Let us argue that the input given to AH
c from Simc is indistinguishable from the input

given to AH
c by SHreal. Considering how the input to AH

c is formed in both worlds we see
that a distinguisher B = (B1,B2) must be able to distinguish between the following two
experiments defined with respect to a random oracle H:

real world experiment

(X, state)←$ BH1 ()
where X = {x1, . . . , xn} ⊆ U

α←$ Fq r {0}, L← αG

pdata←
(
L, αH(x1), . . . , αH(xn)

)
output BH2 (pdata, state) ∈ {0, 1}

ideal world experiment

(X, state)←$ BH1 ()
where X = {x1, . . . , xn} ⊆ U

L,P1, . . . , Pn ←$ E(Fp) r {O}
pdata←

(
L, P1, . . . , Pn

)
output BH2 (pdata, state) ∈ {0, 1}

The first line in each experiment corresponds to the environment Z generating a set X for
the honest server. The last line in each experiment corresponds to AH

c being given the input
pdata in each world followed by Z outputting 0 or 1. Note that B2 knows the set X, since
it can be communicated to B2 through the state variable from B1.

Let Wreal be the event that B2 outputs 1 in the left experiment, and Wideal be the event
that B2 outputs 1 in the right experiment. A standard argument shows that if DDH holds
in E(Fp), and H is a programmable random oracle, then the quantity∣∣∣Pr[Wreal]− Pr[Wideal]

∣∣∣
is negligible for all efficient distinguishers B. The same remains true even if pdata is ex-
panded to include additional uniformly sampled points in E(Fp) at a number of set locations.
We conclude that the input given to AH

c by Simc is indistinguishable from the input given
to AH

c in a real world interaction, as required.

4.4.2 Privacy for the client against a malicious server

Next, let’s show that a malicious server AH
s that interacts with an honest client with

input (Ȳ , S), learns nothing other than what is revealed by the ideal functionality.

For an adversary AH
s , a simulator Sims, and an environment Z, define the following two

random variables:

• realΠ,AH
s ,Z is the random variable defined as the output of Z in a real world execution

after interacting with the malicious server AH
s as in Figure 3a.

• idealF ,Sims,Z is the random variable defined as the output of Z in an ideal world
execution after interacting with the simulator Sims as in Figure 3b.

25

The Apple PSI system Apple Inc.

Definition 3. We say that a protocol Π for F is client private if for every efficient adver-
sary As, there exists an efficient adversary Sims, such that for every efficient environment Z,∣∣∣Pr

[
realΠ,AH

s ,Z = 1
]
− Pr

[
idealF ,Sims,Z = 1

]∣∣∣ ≤ ε
for some negligible ε.

As in the previous section, the terms “efficient” and “negligible” are interpreted asymp-
totically with respect to a security parameter.

In what follows, we use the following notation (i) B is an upper bound on the size of the
inputs X and Ȳ , (ii) q is the size of E(Fp), and (iii) Qro is an upper bound on the number
of random oracle calls made by AH

s .

Theorem 4. Protocol Π in Figure 2 is client private, assuming H : U → E(Fp) r {O}
is modeled as a random oracle, H ′ : E(Fp) → K′ is a secure key derivation function,
(Enc,Dec) is IND$-CPA secure, DHF is weak t-wise independent, F is a secure PRF, and
2(B +Qro)/(q − 1) is negligible.

Proof Sketch. Let AH
s be an efficient adversary as in Figure 3a. Let us define the following

adversary Sims that interacts with an external environment Z as in Figure 3b. Adversary
Sims runs AH

s and interacts with it as follows:

1. When Sims receives a message from Z it forwards the message to AH
s . When Sims

receives a message from AH
s intended for Z it forwards the message to Z.

2. Sims emulates a random oracle H : U → E(Fp) r {O} for AH
s using the following

procedure. First, initialize an empty list LH . Then, for j = 1, . . . , Qro, when AH
s

issues a query for H(xj), where xj ∈ U , do:

• if there is a triple (xj , β, R) in LH then send R to AH
s (namely, H(xj) = R);

• otherwise, do: βj ←$ Fq r {0}, Rj ← βi ·G ∈ E(Fp),

send Rj to AH
s , and append (xj , βj , Rj) to the list LH .

3. Eventually, AH
s either aborts or outputs pdata← (L,P1, . . . , Pn′) along with two hash

functions h1, h2 : U → [n′]. If AH
s aborts, then Sims aborts and terminates.

4. Sims checks that (L,P1, . . . , Pn′) are non-zero points in E(Fp) and all are distinct. If
not, then Sims runs AH

s until it terminates, and terminates.

5. Input extraction: Sims extracts a set X ⊆ U from the pdata output by AH
s .

Sims sets X ← ∅ and does:
For each triple (x, β,R) in LH :

if Ph1(x) = β · L or Ph2(x) = β · L then add x ∈ U to the set X.

To give some intuition as to why an x ∈ U that satisfies the condition should be added
to X, recall that every triple (x, β,R) in LH satisfies R = β ·G and defines H(x) = R.
Then, if Ph1(x) = β · L and L = α · G, then Ph1(x) = βα · G = α · R. Therefore, for
this x ∈ U we have Ph1(x) = α ·H(x). This implies that x ∈ U is part of the server’s
set X. The same applies if Ph2(x) = β · L.

26

The Apple PSI system Apple Inc.

6. Sims sends X to the functionality F .

7. AH
s may continue to query H and interact with Z. Eventually, Z sends (Ȳ , S) to

Cideal who forwards it to F as in Figure 3b. Subsequently F sends to Sims the list Ȳid
and one of two things:

• type (i) output: Ȳ [id(Ȳ ∩X) r S]{id ,ad} ⊆ (ID ×D) and S ⊆ id(Ȳ), or

• type (ii) output: id(Ȳ ∩X) ∪ S ⊆ id(Ȳ).

Let m :=
∣∣Ȳid ∣∣. Sims now needs to generate m vouchers to give to As. This mechani-

cally follows the steps of the protocol.

8. First, Sims does the following:

• choose a random key hkey ←$ K for a (smax, t) detectable hash function DHF :
K × X → R. Here t is the ftPSI-AD threshold and smax is an upper bound on
the size of the synthetic set S.

• choose a random key adkey ←$ K′ for the encryption scheme (Enc,Dec).

• choose a random key fkey ←$ K′′ for the PRF F : K′′ × ID → F2
Sh ×X ×R.

• Initialize a threshold Shamir secret sharing for adkey , so that t+1 or more shares
are needed to reconstruct adkey .

9. Next, for each id in the list Ȳid , the simulator Sims generates a voucher as follows:

• Preparation:

– Choose two random keys ckey , rkey in K′.
– compute (x, z, x′, r1)← F (fkey , id) ∈ F2

Sh ×X ×R.

– Generate a threshold Shamir secret share sh ∈ F2
Sh of adkey , where t + 1

shares are needed to reconstruct adkey . The x-coordinate of sh is set to
x ∈ FSh from the previous step.

– Set dummy ← (x, z) ∈ F2
Sh, a dummy Shamir secret share.

– Compute r2 ← DHF(hkey , x′) ∈ R.

– set

adct1 ←$ Enc(ckey , 000 . . . 00) and rct1 ←$ Enc
(
rkey , (r1, adct1, dummy)

)
.

Note: adct1 should be the same length as adct in all vouchers.

• case (i): id 6∈ id(Ȳ ∩ X) ∪ S. Choose random Q1, S1, Q2, S2 in E(Fp) and set
rct ← rct1.

• case (ii): id ∈ id(Ȳ ∩X) ∪ S.

– choose a random β in Fq, and compute Q1 ← β ·G and S1 ← β · L,

– choose Q2 and S2 independently at random in E(Fp),

– if Sims received type (i) output in Step 7 and id 6∈ S:
then Sims received a pair (id , ad) in Step 7, set

adct ←$ Enc
(
adkey , ad

)
and rct ←$ Enc

(
rkey , (r2, adct , sh)

)
,

otherwise: set rct ← rct1.

27

The Apple PSI system Apple Inc.

• Set ct1 ←$ Enc(H ′(S1), rkey) and ct2 ←$ Enc(H ′(S2), rkey).
Here ct1 and ct2 are an encryption of rkey using the keys H ′(S1) and H ′(S2),
respectively.

• Choose a random bit b in {1, 2} and set

voucher id ← (id , Qb, ctb, Q3−b, ct3−b, rct). (2)

10. Sims sends the list of m vouchers to As in the order that id ’s are listed in Ȳid .

This completes our description of the simulator Sims.

We claim that Pr
[
realΠ,AH

s ,Z = 1
]
, the probability that Z outputs 1 in the ideal world,

is close to Pr
[
idealF ,Sims,Z = 1

]
. To see why, we argue that the list of m vouchers that

Sims gives to AH
s in Step 10 is indistinguishable from the vouchers that AH

s receives from
CH

real in a real world execution. It follows that the resulting messages to Z in both worlds
are indistinguishable, and therefore Z will behave the same in both worlds.

First, let L = α · G for some (unknown) 0 6= α ∈ Fq. Second, if AH
s did not query for

H(y) then H(y) is (implicitly) defined as a fresh random element in E(Fp)r{O}. Otherwise,
H(y) = Rj = βjG for some (y, βj , Rj) ∈ LH .

The failure event E: Let us define a negligible probability event E that would cause the
simulation to fail. During the ideal world execution with Sims, let Ȳ be a list of triples
sent by Z to CH

ideal, and let pdata be the data output by AH
s . Let X be the result of input

extraction in Step 5. We say that event E happened if there exists a triple (y, id , ad) in Ȳ
such that

y 6∈ X but αH(y) = Ph1(y) or αH(y) = Ph2(y). (3)

We claim that
Pr[E] ≤ 2(B +Qro)/(q − 1) (4)

which is negligible by assumption.
To see why (4) holds, consider a triple tr := (y, id , ad) in Ȳ that satisfies (3). If AH

s

queried for H(y) before the extraction in Step 5, then this triple cannot satisfy (3) because
αH(y) ∈ {Ph1(y), Ph2(y)} implies y ∈ X. If AH

s queried for H(y) in Step 7 then AH
s has

already output pdata, so H(y) will satisfy αH(y) ∈ {Ph1(y), Ph2(y)} with probability at most

2/(q − 1). Since AH
s makes at most Qro queries to H, the probability that a y queried in

Step 7 causes (3) to hold is at most 2Qro/(q−1). Finally, if AH
s never queried for H(y), then

H(y) is independent of AH
s view. Since there are at most B triples in Ȳ , the probability

that such a y causes (3) to hold is at most 2B/(q−1). Combining the two bounds gives (4).

To complete the proof we argue that when the failure event E does not happen, Sims

generates correct vouchers. Consider a triple (y, id , ad) in Ȳ . The real world client CH
real

generates a voucher
voucher id ← (id , Q1, ct1, Q2, ct2, rct)

for this triple. We sketch the argument as to why Sims generates a voucher sampled from
an indistinguishable distribution as this voucher id . A complete proof would carry out this
argument in a sequence of hybrid steps. Here we give the outline for the argument.

There are three cases:

28

The Apple PSI system Apple Inc.

• case (i): α ·H(y) is equal to exactly one of Ph1(y) or Ph2(y) and id 6∈ S. By (4), we
know that y ∈ X with overwhelming probability. Therefore, Sims generates voucher id

using Step 9 case (ii).

We know that in this case the real world client CH
real generates a voucher containing

ct1 and ct2 that are an encryption of a random rkey ∈ K′. Adversary As can compute
the decryption key for exactly one of ct1 or ct2, and has no other information about
the decryption key for the other one. Which of ct1 and ct2 is which is chosen at
random by the client. When Sims generates a simulated voucher in Step 9 case (ii)
it does the same: it ensures that ct1 and ct2 are encryptions of a random rkey ∈ K′,
and that the adversary knows the decryption key for exactly one of them, exactly as
in the real voucher.

It remains to argue that the simulated rct is distributed correctly. In the real world,
when ct j for j ∈ {1, 2} is decrypted to reveal rkey , this rkey can be used to decrypt
rct to reveal (r, adct , sh). Here r ∈ R is in the image of the DHF, and sh ∈ F2

Sh is a
Shamir share of adkey . To argue that the simulated rct generated by Sims is sampled
from an indistinguishable distribution, there are two cases:

Type (i) output in Step 7: in this case the plaintext in the decrypted rct from the real
world client is distributed as the decrypted rct from Sims. The same applies to adct .

Type (ii) output in Step 7: in this case we know that
∣∣id(Ȳ ∩ X) r S

∣∣ ≤ t. For
the real world client, the plaintext in the decrypted rct contains (r, adct , sh), where
r = DHF(hkey , x′) and sh ∈ F2

Sh is a Shamir share with x-coordinate x. Both x′ and
x are generated pseudorandomly by F (fkey , id). Now, in the voucher from Sims, the
plaintext in the decrypted rct = rct1 contains (r, adct1, dummy), where both r and
dummy ∈ F2

Sh are generated pseudorandomly by F (fkey , id). Because (i) DHF is weak
t-wise independent, (ii) t Shamir shares are uniform in F2

Sh, and (iii) F is a secure PRF,
the pair (r, dummy) in this decrypted rct1 is indistinguishable from (r, sh) in the real
world client voucher. Moreover, because in the real world the adversary sees at most
t distinct Shamir shares of adkey , these shares reveal nothing about adkey . Recall
that adkey is the key used to create the ciphertext adct in the real world voucher.
Similarly, in the ideal world, the adversary sees adct1, but has no other information
about the key ckey that Sims uses to create this ciphertext. Hence, by the IND$-CPA
property of (Enc,Dec), the adct generated by the real world client is indistinguishable
from adct1 generated by Sims.

• case (ii): α ·H(y) is equal to none of Ph1(y) or Ph2(y) and id 6∈ S. Then y 6∈ X and
therefore Sims generates voucher id using Step 9 case (i).

In the real world the adversary receives ct1 and ct2 in the voucher generated by the
real world client, but has no other information about the keys used to create these
ciphertexts. The same holds for the voucher generated by Sims in the ideal world.
Therefore, in both worlds the adversary sees rct , but has no other information about
the key rkey used to create this ciphertext. Hence, by the IND$-CPA property of
(Enc,Dec), the rct generated by the real world client is indistinguishable from rct
generated by Sims.

• case (iii): id ∈ S. In this case, As can decrypt exactly one of ct1 or ct2 in the
voucher generated by the real world client and recover rkey . It can then decrypt rct

29

The Apple PSI system Apple Inc.

to obtain (r, adct1, dummy), where both r and dummy are generated by F (fkey , id).
The voucher generated by Sims in (2) is generated exactly the same way.

Note that crucially, α ·H(y) can never be equal to both Ph1(y) and Ph2(y). This is because
all of P1, . . . , Pn′ are distinct and h1(y) 6= h2(y) by construction. Hence, the three cases
above cover all the triples in Ȳ .

In summary, if event E does not happen, then in all three cases the vouchers generated
by Sims in (2) are sampled from a distribution that is indistinguishable from the distribution
from which the real world CH

real samples the vouchers. Hence, the data given to AH
s in the

ideal world is indistinguishable from the data given to it in the real world, and therefore Z
behaves the same in both worlds.

5 Real world considerations

Multiple client devices. So far we described the client as a single device. In practice a
single user may own multiple devices. Client devices may contain an overlapping sequence
of triples: the same triple (y, id , ad) may reside on multiple devices, resulting in duplicate
triples in the overall client tuple Ȳ . Every device will send a voucher for all its triples,
causing multiple vouchers to be received at the server for a single identifier id . Nevertheless,
an id should only count once towards the tPSI-AD threshold, even if the server receives
multiple vouchers for this id .

To address this, all the devices belonging to a single user share a small amount of
secret state. Specifically, this state consists of the keys (hkey , adkey , fkey) and the Shamir
secret sharing polynomial generated during client setup. This way all the vouchers contain
Shamir shares of the same adkey , even if the vouchers are generated on different client
devices. Moreover, in Step 2 of voucher generation, the client generates the x-coordinate
of every Shamir share as F (fkey , id). Therefore, duplicate triples will result in identical
Shamir shares sent to the server. This is the reason for generating the Shamir x-coordinate
pseudorandomly from id . It ensures that every identifier counts once towards the tPSI-AD
threshold, even if multiple vouchers are sent to the server for this identifier.

Duplicate images. A user might store multiple variants or near-duplicates of the same
image on their client. In our language, this means that a single client could hold two triples
(y, id , ad) and (y, id ′, ad) that have same hash y, but different identifiers. This causes an
issue that is addressed outside of the cryptographic protocol. Suppose a user copies a single
image from a USB drive onto his or her device. The image will be assigned an identifier id .
Later the user copies the same image from the USB drive onto a different client device. The
new copy of the image will be assigned a new identifier id ′ which is likely to be different
from id . Because the two copies have different identifiers they will count twice towards the
tPSI-AD threshold. In particular, the two triples will cause two distinct Shamir shares to
be sent to the sever, even though they correspond to the same semantic image. Several
solutions to this were considered, but ultimately, this issue is addressed by a mechanism
outside of the cryptographic protocol.

30

The Apple PSI system Apple Inc.

6 A brief review of the literature

We briefly review the recent literature on private set intersection (PSI), and work related
to the PSI-AD and tPSI-AD variants that we are interested in.

OPRF Methods An important category of PSI protocols is based on an oblivious PRF
(OPRF). The OPRF can be implemented using the Diffie-Hellman PRF, using RSA, or using
OT extension. The protocols based on OPRF from OT extension are the most efficient in
computation. In particular, [KKRT16, PSZ18] make use of a one-query OPRF from OT
extension along with Cuckoo hashing, while [PRTY19, CM20] build an elegant many-query
OPRF from OT extension and do not need a data structure. However, these protocols do
not satisfy the strict communication requirements in our settings.

The work of [CGT12] uses a DH-based OPRF to only reveal the cardinality of the
intersection by secretly permuting the PRF evaluations of the server’s dataset, so that the
server does not know which of its PRF values corresponds to which element of X. The
protocols in Section 4 can be viewed as an adaptation of this construction to our required
constraints.

The recent work of [IKN+20] supports computation of set intersection cardinality. The
proposed Diffie-Hellman method is related to [CGT12]. They also propose a method using
a Bloom filter that can have false positives, which is undesirable in our settings.

The work of [GMR+21] also supports computation of set intersection cardinality, but
requires more interaction between the client and server than is allowed in our settings.

Two party computation. [PSWW18, PSTY19, FNO19] provide efficient circuits for
computing set intersection and cardinality. They then evaluate the circuit using 2PC tech-
niques, either using Yao Garbled circuits or using GMW, so that only one party learns the
intersection cardinality. Another technique in [CO18] shows how to combine the best non-
MPC techniques with MPC to compute any function of the intersection. These methods
do not quite fit the strict communication requirements in our settings.

[CLR17] gives a PSI protocol using fully homomorphic encryption (FHE) designed for
the case where the sender’s set is much larger than the device’s set. This protocol applies
in the settings where the server creates global public data pdata, but relies on FHE. A dual
of their scheme only needs linearly homomorphic encryption.

Bloom filter methods. [EFG+15, KLS+17, DC17] construct PSI schemes using Bloom
filters and additively homomorphic encryption. The scheme of [DC17] can be used to
compute intersection cardinality, but can have false positives.

Threshold PSI. [HOS17] considers a variant of the PSI problem, called threshold PSI,
where one of the parties learns the intersection contents only when then intersection cardi-
nality exceeds a specified threshold. This problem is also studied in [GN17, ZC18, GS19,
BDP20]. This variant of threshold PSI is quite different from our tPSI-AD setting. In our
setting the requirement is that the protocol not reveal the intersection contents to either
party, even when the threshold is exceeded. Only the associated data for the intersection
is revealed. The protocol of [ZC18] can be adapted to reveal associated data when the

31

The Apple PSI system Apple Inc.

intersection cardinality exceeds a threshold, as in our settings, but the protocol requires
multiple round trips.

Acknowledgments

We thank Mihir Bellare and Benny Pinkas for helpful comments and discussions about this
writeup.

References

[ABN18] Michel Abdalla, Mihir Bellare, and Gregory Neven. Robust encryption. J.
Cryptology, 31(2):307–350, 2018. Early version in proc. of TCC 2010; Cryptol-
ogy ePrint Archive, Report 2008/440.

[App21] Apple Inc. CSAM detection: technical summary, 2021. https://apple.com.

[BDP20] Pedro Branco, Nico Döttling, and Sihang Pu. Multiparty cardinality test-
ing for threshold private set intersection. Cryptology ePrint Archive, Report
2020/1307, 2020. Cryptology ePrint Archive, Report 2020/130.

[Bel21] Mihir Bellare. A concrete-security analysis of the apple PSI protocol, 2021.
public report.

[BN08] Mihir Bellare and Chanathip Namprempre. Authenticated encryption: Re-
lations among notions and analysis of the generic composition paradigm. J.
Cryptol., 21(4):469–491, 2008. Early version in proc. of Asaicrypt 2000; Cryp-
tology ePrint Archive, Report 2000/025.

[BR06] Mihir Bellare and Phillip Rogaway. The security of triple encryption and a
framework for code-based game-playing proofs. In EUROCRYPT, volume 4004
of LNCS, pages 409–426, 2006. Cryptology ePrint Archive, Report 2004/331.

[BS20] Dan Boneh and Victor Shoup. A graduate course in applied cryptography. 2020.
https://cryptobook.us.

[Can00] Ran Canetti. Universally composable security: A new paradigm for crypto-
graphic protocols. IACR Cryptol. ePrint Arch., 2000:67, 2000.

[CCL15] Ran Canetti, Asaf Cohen, and Yehuda Lindell. A simpler variant of univer-
sally composable security for standard multiparty computation. In CRYPTO,
volume 9216 of LNCS, pages 3–22. Springer, 2015. Cryptology ePrint Archive,
Report 2014/553.

[CDG+18] Jan Camenisch, Manu Drijvers, Tommaso Gagliardoni, Anja Lehmann, and
Gregory Neven. The wonderful world of global random oracles. In EURO-
CRYPT, volume 10820 of LNCS, pages 280–312. Springer, 2018. Cryptology
ePrint Archive, Report 2018/165.

32

https://eprint.iacr.org/2008/440
https://apple.com
https://eprint.iacr.org/2020/1307
https://eprint.iacr.org/2000/025
https://eprint.iacr.org/2004/331.pdf
https://cryptobook.us
https://eprint.iacr.org/2014/553.pdf
https://eprint.iacr.org/2018/165.pdf

The Apple PSI system Apple Inc.

[CGT12] Emiliano De Cristofaro, Paolo Gasti, and Gene Tsudik. Fast and private com-
putation of cardinality of set intersection and union. In CANS 2012, 2012.
Cryptology ePrint Archive, Report 2011/141.

[CJS14] Ran Canetti, Abhishek Jain, and Alessandra Scafuro. Practical UC security
with a global random oracle. In ACM CCS, pages 597–608. ACM, 2014. Cryp-
tology ePrint Archive, Report 2014/908.

[CLR17] Hao Chen, Kim Laine, and Peter Rindal. Fast private set intersection from
homomorphic encryption. In CCS 2017, pages 1243–1255. ACM, 2017. Cryp-
tology ePrint Archive, Report 2017/299.

[CM20] Melissa Chase and Peihan Miao. Private set intersection in the internet setting
from lightweight oblivious PRF. In CRYPTO 2020, volume 12172 of LNCS,
pages 34–63. Springer, 2020. Cryptology ePrint Archive, Report 2020/729.

[CO18] Michele Ciampi and Claudio Orlandi. Combining private set-intersection with
secure two-party computation. In SCN 2018, 2018. Cryptology ePrint Archive,
Report 2018/105.

[CS03] Don Coppersmith and Madhu Sudan. Reconstructing curves in three (and
higher) dimensional space from noisy data. In STOC, pages 136–142. ACM,
2003.

[CSV19] Ran Canetti, Alley Stoughton, and Mayank Varia. EasyUC: Using easycrypt
to mechanize proofs of universally composable security. In Computer Secu-
rity Foundations Symposium, pages 167–183. IEEE, 2019. Cryptology ePrint
Archive, Report 2019/582.

[CT10] Emiliano De Cristofaro and Gene Tsudik. Practical private set intersection
protocols with linear complexity. In FC 2010, pages 143–159, 2010. Cryptology
ePrint Archive, Report 2009/491.

[DC17] Alex Davidson and Carlos Cid. An efficient toolkit for computing private set
operations. In ACISP 2017, volume 10343 of LNCS, pages 261–278. Springer,
2017. Cryptology ePrint Archive, Report 2016/108.

[EFG+15] Rolf Egert, Marc Fischlin, David Gens, Sven Jacob, Matthias Senker, and Jörn
Tillmanns. Privately computing set-union and set-intersection cardinality via
bloom filters. In ACISP 2015, volume 9144 of LNCS, page 413–430. Springer,
2015. online version.

[FHSS+20] A. Faz-Hernandez, S. Scott, N. Sullivan, R. Wahby, and C. Wood.
Hashing to elliptic curves, 2020. https://tools.ietf.org/id/

draft-irtf-cfrg-hash-to-curve-06.html.

[FLPQ13] Pooya Farshim, Benôıt Libert, Kenneth G. Paterson, and Elizabeth A. Quaglia.
Robust encryption, revisited. In Proc. of PKC ’13, volume 7778 of LNCS, pages
352–368, 2013. Cryptology ePrint Archive, Report 2012/673.

33

https://eprint.iacr.org/2011/141
https://eprint.iacr.org/2014/908.pdf
https://eprint.iacr.org/2017/299
https://eprint.iacr.org/2020/729
https://eprint.iacr.org/2018/105
https://eprint.iacr.org/2019/582.pdf
https://eprint.iacr.org/2009/491
https://eprint.iacr.org/2016/108
https://link.springer.com/chapter/10.1007/978-3-319-19962-7_24
https://tools.ietf.org/id/draft-irtf-cfrg-hash-to-curve-06.html
https://tools.ietf.org/id/draft-irtf-cfrg-hash-to-curve-06.html
https://eprint.iacr.org/2012/673

The Apple PSI system Apple Inc.

[FNO19] Brett Hemenway Falk, Daniel Noble, and Rafail Ostrovsky. Private set inter-
section with linear communication from general assumptions. In WPES 2019,
pages 14–25. ACM, 2019. Cryptology ePrint Archive, Report 2018/238.

[FOR17] Pooya Farshim, Claudio Orlandi, and Razvan Rosie. Security of symmetric
primitives under incorrect usage of keys. IACR Trans. Symmetric Cryptology,
2017(1):449–473, 2017. Cryptology ePrint Archive, Report 2017/288.

[GMR+21] Gayathri Garimella, Payman Mohassel, Mike Rosulek, Saeed Sadeghian, and
Jaspal Singh. Private set operations from oblivious switching. In PKC 2021,
2021. Cryptology ePrint Archive, Report 2021/243.

[GN17] Satrajit Ghosh and Tobias Nilges. An algebraic approach to maliciously secure
private set intersection. Cryptology ePrint Archive, Report 2017/1064, 2017.
Cryptology ePrint Archive, Report 2017/1064.

[GPR+21] Gayathri Garimella, Benny Pinkas, Mike Rosulek, Ni Trieu, and Avishay Yanay.
Oblivious key-value stores and amplification for private set intersection. In
CRYPTO, 2021. Cryptology ePrint Archive, Report 2021/883.

[GS19] Satrajit Ghosh and Mark Simkin. The communication complexity of threshold
private set intersection. In CRYPTO 2019, volume 11693 of LNCS, pages 3–29.
Springer, 2019. Cryptology ePrint Archive, Report 2019/175.

[HOS17] Per Hallgren, Claudio Orlandi, and Andrei Sabelfeld. PrivatePool: Privacy-
preserving ridesharing. In CSF 2017, 2017. online version.

[IKN+20] Mihaela Ion, Ben Kreuter, Ahmet Erhan Nergiz, Sarvar Patel, Shobhit Saxena,
Karn Seth, Mariana Raykova, David Shanahan, and Moti Yung. On deploy-
ing secure computing: Private intersection-sum-with-cardinality. In EuroS&P
2020, pages 370–389. IEEE, 2020. Cryptology ePrint Archive, Report 2020/723.

[KBC97] Hugo Krawczyk, Mihir Bellare, and Ran Canetti. HMAC: keyed-hashing for
message authentication. RFC, 2104:1–11, 1997.

[KE10] Hugo Krawczyk and Pasi Eronen. HMAC-based extract-and-expand key deriva-
tion function (HKDF). RFC, 5869:1–14, 2010.

[KKRT16] Vladimir Kolesnikov, Ranjit Kumaresan, Mike Rosulek, and Ni Trieu. Efficient
batched oblivious PRF with applications to private set intersection. In Pro-
ceedings of CCS 2016, pages 818–829. ACM, 2016. Cryptology ePrint Archive,
Report 2016/799.

[KLS+17] Agnes Kiss, Jian Liu, Thomas Schneider, N. Asokan, and Benny Pinkas. Private
set intersection for unequal set sizes with mobile applications. In PoPETs 2017,
2017. Cryptology ePrint Archive, Report 2017/670.

[Lin16] Yehuda Lindell. How to simulate it - a tutorial on the simulation proof tech-
nique. Cryptology ePrint Archive, Report 2016/046, 2016. Cryptology ePrint
Archive, Report 2016/046.

34

https://eprint.iacr.org/2018/238
https://eprint.iacr.org/2017/288
https://eprint.iacr.org/2021/243
https://eprint.iacr.org/2017/1064
https://eprint.iacr.org/2021/883.pdf
https://eprint.iacr.org/2019/175
https://ieeexplore.ieee.org/document/8049726
https://eprint.iacr.org/2019/723
https://eprint.iacr.org/2016/799
https://eprint.iacr.org/2017/670
https://eprint.iacr.org/2016/046

The Apple PSI system Apple Inc.

[NR97] Moni Naor and Omer Reingold. Number-theoretic constructions of efficient
pseudo-random functions. In FOCS ’97, pages 458–467, 1997.

[PRTY19] Benny Pinkas, Mike Rosulek, Ni Trieu, and Avishay Yanai. Spot-light:
Lightweight private set intersection from sparse OT extension. In CRYPTO
2019, volume 11694 of LNCS, pages 401–431. Springer, 2019. Cryptology ePrint
Archive, Report 2019/634.

[PRTY20] Benny Pinkas, Mike Rosulek, Ni Trieu, and Avishay Yanai. PSI from PaXoS:
Fast, malicious private set intersection. In EUROCRYPT 2020, volume 12106
of LNCS, pages 739–767. Springer, 2020. Cryptology ePrint Archive, Report
2020/193.

[PSTY19] Benny Pinkas, Thomas Schneider, Oleksandr Tkachenko, and Avishay Yanai.
Efficient circuit-based PSI with linear communication. In EUROCRYPT 2019,
volume 11478 of LNCS, pages 122–153. Springer, 2019. Cryptology ePrint
Archive, Report 2019/241.

[PSWW18] Benny Pinkas, Thomas Schneider, Christian Weinert, and Udi Wieder. Efficient
circuit-based PSI via cuckoo hashing. In EUROCRYPT 2018, volume 10822
of LNCS, pages 125–157. Springer, 2018. Cryptology ePrint Archive, Report
2018/120.

[PSZ18] Benny Pinkas, Thomas Schneider, and Michael Zohner. Scalable private set
intersection based on OT extension. ACM Trans. Priv. Secur., 21(2):7:1–7:35,
2018. Cryptology ePrint Archive, Report 2016/930.

[Rog04] Phillip Rogaway. Nonce-based symmetric encryption. In FSE’04, volume 3017
of LNCS, pages 348–359. Springer, 2004.

[Sho20] Victor Shoup. Security analysis of SPAKE2+. In TCC, volume 12552 of LNCS,
pages 31–60. Springer, 2020. Cryptology ePrint Archive, Report 2020/313.

[ZC18] Yongjun Zhao and Sherman S. M. Chow. Can you find the one for me? Privacy-
preserving matchmaking via threshold PSI. In WPES 2018, 2018. Cryptology
ePrint Archive, Report 2018/184.

35

https://eprint.iacr.org/2019/634
https://eprint.iacr.org/2020/193
https://eprint.iacr.org/2020/193
https://eprint.iacr.org/2019/241
https://eprint.iacr.org/2018/120
https://eprint.iacr.org/2018/120
https://eprint.iacr.org/2016/930
https://eprint.iacr.org/2020/313
https://eprint.iacr.org/2018/184

	Introduction
	Streaming threshold PSI with associated data
	Threshold PSI-AD
	Fuzzy threshold PSI-AD
	Protocol requirements and constraints

	Building blocks
	The Diffie-Hellman random self reduction
	Detectable hash functions

	Threshold PSI-AD using the DH random self reduction
	A protocol for tPSI-AD
	A protocol for ftPSI-AD
	Constructing a detectable hash function
	Security
	Privacy for the server's dataset X against a malicious client
	Privacy for the client against a malicious server

	Real world considerations
	A brief review of the literature

